CHAPTER 3

On Fourier Transforms and Delta
Functions

The Fourier transform of a function (for example, a function of time or space) provides a
way to analyse the function in terms of its sinusoidal components of different wavelengths.
The function itself is a sum of such components.

TheDirac deltafunctionisahighly localized function whichiszero almost everywhere.
There is a sense in which different sinusoids are orthogonal. The orthogonality can be
expressed in terms of Dirac delta functions.

In this chapter we review the properties of Fourier transforms, the orthogonality of
sinusoids, and the properties of Dirac delta functions, in away that draws many analogies
with ordinary vectorsand the orthogonality of vectorsthat are parallel to different coordinate
axes.

3.1 Basic Analogies

If A isan ordinary three-dimensional spatial vector, then the component of A in each of the
three coordinate directions specified by unit vectors X1, X2, X3isA - X fori =1,2, or 3. It
follows that the three cartesian components (A1, Az, A3) of A are given by

A =A%, for i=1,2 0r3. (32)

We can write out the vector A asthe sum of itscomponentsin each coordinate direction
asfollows:

3
A=) AX. (3.2)
i=1

Of coursethethree coordinate directions are orthogonal, a property that is summarized
by the equation

Xi - Xj = §ij. (3.3)

Fourier series are essentially a device to express the same basic ideas (3.1), (3.2) and
(3.3), applied to a particular inner product space.
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62 Chapter 3 / ON FOURIER TRANSFORMS AND DELTA FUNCTIONS

Aninner product space is avector space in which, for each two vectors f and g, we
define a scalar that quantifies the concept of “a scalar equal to the result of multiplying f
and g together.” Thus, for ordinary spatial vectors x and y in three dimensions, the usual
scalar product x - y isan inner product. In the case of functions f (x) and g(x) that may be
represented by Fourier seriesover arange of x valuessuch as—% L<xx< % L, wecandefine

1
an inner product f.g by leLL f.g* dx. Here, g* isthe complex conjugate of g. By analogy
2
with ordinary vectors we can think of \/f.f asthe real-valued positive scaar “length” of
1
f, wherenow /1. = /lel‘L f.f*dx. Evenif f(x) isnot area function, f.f* isreal
2

and therefore the length /.  isreal.

In the case of Fourier series, we consider a space consisting of functions that can
be represented by their components in an infinite number n=1, 2, 3, ... of “coordinate
directions,” each one of which corresponds to a particular sinusoid.

Fourier transforms take the process a step further, to a continuum of n-values.

To establish these results, let us begin to look at the details first of Fourier series, and
then of Fourier transforms.

3.2 Fourier Series

Consider a periodic function f = f (x), defined on the interval —3L < x < 3L and
having f (x + L) = f (x) foral —co < X < oo. Then the complex Fourier series expansion

for f is
OO .
foo= )" cne™™t, (3.4)
n=-o00
First we define
1L
|(|)=/2 2IX/L gy
—%L
Then

L . )
I (I) — m(eﬂﬂ _ e—lﬂl)

. . 1
forl #0.1f | isaninteger, @™ = e~ and 1 (1) = 0.1f | = 0, then 1 (0) = /%, 1dx = L.
It follows that ’

i
/‘2 AT (=MmX/L gy | 5 (3.5

1
5L

and we can find the coefficients in (3.4) by multiplying (3.4) through by e=27M%/L and
integrating over x from —%L to +% L. Here we can work with the inner product space
specified in Section 3.1. We can think of (3.5) as giving the component of the function

Mrking pages for Paul Richards’ class notes; do not copy or circulate without permission from PGR  2004/10/13 15:09



3.2 Fourier Series
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FIGURE 3.1

The values of f(x) are shown from x = —1 to x = 4 together with §;, &, S, and §; as heavy
lines from x = —/10 to x = 117r/10, and S0, S0, and Sy as lighter lines from x = —7 /100 to
x = 117 /100. Further detail is given with an expanded scale in the next Figure.

e?7™/L in the direction of the function e?™™/L_In application to (3.4), we find

L !
/ f(x) e 3™/ dx = L, (3.6)

1
-3

NI

which determines the coefficients ¢y, in (3.4).
Comparing the last six equations, we seethat (3.4), (3.5) and (3.6) correspond to (3.2),
(3.3), and (3.1) respectively.

3.21 GIBBS PHENOMENON

When a function having a discontinuity is represented by its Fourier series, there can be
an “overshoot.” The phenomenon, first investigated thoroughly by Gibbs, is best described
with an example.

Thus, consider the periodic function

fx)=1 for O<x<m
=-1 for m <x<2n (37)
fx+2n)= f(X) for al x.

It has discontinuities at O, £, +27, £3m, .. ., and the Fourier seriesfor f is

sin3x Jrsin5x
3 5

f(x):%(siner +...). (3.8
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FIGURE 3.2
Same as Figure 3.1, but with a scale expanded by a factor of 10 to show detail in the vicinity of a
discontinuity.

To examine the convergence of this series, define

X”: sin2j — 1x

4
=2 2 —1

(3.9)
i=1

Then S, is the sum of the first n terms of the Fourier series (3.8). Figure 3.1 gives a
comparison between f and seven different approximations S,(x).

Clearly the S,(x) become better approximationsto f (x) asn increases. But even when
n is quite large (n = 10, 20, 40) the series approximations overshoot the discontinuity.
Figure 3.2 gives a close-up view.

Instead of jumping up from —1 to +1, the finite series approximations S,(x) for large
n overshoot to values almost equal to £1.2. It turns out that the overshoot stays about the
same, tending to about +-1.18 in the limit asn — oo. The overshoot amountsto 18%! This
means that Fourier series may not be very good for representing discontinuities. But they
are often very good for respresenting smooth functions.

3.3 Fourier Transforms
We begin with
foo= )" cne™™/t (3.4 again)

N=—00

where
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3.3 Fourier Transforms

1L
2
1 .
=1t f f(x) e 27™/L gx (3.6 again)
—%L
andlet L — oo.
Define
2
k_% and Lcy=g(k).
Then

L
—dk=dn=1
an dn

for unit increments in the summation (3.4), and this summation converts to an integral via

f(x)= Z(Lc )e2””‘></L f g(k)ekx d: (3.10)

where

gk = lim Lcn=/ f(x)e ™ dx. (3.12)

We refer to g(k) as “the Fourier transform of f (x).” Equivalently, we say that f (x)

and g(k) are “Fourier transform pairs.”
Obviously, (3.10) correspondsto (3.4), and (3.11) correspondsto (3.6). But what about

orthogonality?
Replacing k in (3.10) by K to get

_ i ind_K
f(X)—/g(K)e o=

and then substituting this expression for f (x) into (3.10), we obtain

K) = K i Kx —ikx )

gk /[/9( )€ —zn]e dx
—00  —00

Re-arranging this,

g(k) = /(K){ /é(K k>de}
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66 Chapter 3 / ON FOURIER TRANSFORMS AND DELTA FUNCTIONS

Sincethislast result istrue for any g(k), it follows that the expression in the big curly
brackets is a Dirac delta function:

S(K — k) = % / g (K=xgy. (3.12)

Thisis the orthogonality result which underlies our Fourier transform. It says that €% and
€ XX are orthogonal unlessk = K (in which case they are the same function). We discuss
deltafunctions further in Section 3.4.

Comparing with Section 3.1: equations (3.10), (3.11), and (3.12) correspond to (3.2),
(3.2) and (3.3) respectively.

3.3.1 THEUNCERTAINTY PRINCIPLE

This subsection describes an important attribute of Fourier transform pairs, namely that
if one of the pair of functions has values that are large over only a limited range of its
independent variable (X, say), then the Fourier-transformed function will have significant
amplitude over a wide range of its independent variable (k, say). And if the transformed
function is significant over only a narrow range of k values, the original function will be
spread over awide range of x values.

To appreciate these concepts, we shall work with the function

f)=eTsnQt if 0<t

(3.13)
=0 if t<O.
which has the Fourier transform
o0 . .
eli @+2)-1/Tt _ dli (0-2)-1/T]t
f(w) = f - dt
2i
0 (3.14)
1 1

T 20+ +2/T 2w—-Q+2/T

Note that in equation (3.14) we are working with the independent variablest and w
rather than with x and k. The sign convention is discussed in Box 3.1. Note too that we
have chosen to use the same symbol, f, for the function under consideration, whether it is
specifiedinthetimedomainas f (t) in (3.13), or in thefrequency domain as f (w) in (3.14).
This use of the same symbol may at first appear confusing because previously we worked
with the concept of two functions, for example f (x) and g(k) when we were considering a
function of x and itstransform in the k domain. The reason for now using the same symbol
isto acknowledge a deep truth, namely that we are really working with information, and it
doesn’t matter whether we express this information in the time domain or in the frequency
domain. Thus, in terms of the information contained in a function such as f (t), when we
transform it to the frequency domain we have simply chosen to use a different way to look
at the same information that was contained in the original function. Because it is really
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3.3 Fourier Transforms

BOX 3.1
Sgn Conventions, and Multi-dimensional Transforms

In equation (3.14), note that the sign convention taken for the transform of f(t) is
. 00 .
f(w) = [, f(®) dt, whereas previously we used f(k) = [ f(x)e~'k* dx for the

spatia transform. The redlity is that numerous different conventi o%cs arein use. Therefore,
when working out the details of a particular application of Fourier analysis, it isimportant
to be sure you know what the convention is. It is quite common to do what we are doing
here, namely, use a different convention for spatial transforms, than for time transforms.
Throughout these notes, we use

9] X 1 oo .
f(w):/ feetdt, and f(t)= Z/ f(w)e ' do D)
for the time transform, and
o0 . 1 o] .
f(k) = f fx)e ™ dx, and f(x):Z / f (et dk 2

for a spatial transform.

In the second of equations (1) we have written f (t) as a summation of its frequency
components; and in the second of equations (2), f (x) isasummation of its wavenumber
components.

Spatia transforms may have additional dimensions, such as the 3D transform from
X = (X1, X2, X3) to k = (Kky, ko, k3) expressed by

f(k):/oo /OO /oo F () €K% dxq dxp dxa (3a)

wherek - X = kix1 + Kox2 + kaxs. The reverse transform, in which f (X) is represented as
asummation of its wavenumber components, is

(0= 50 [W LO [m f (k) €% dky dk dks. (3b)

An example of acombined space-time transform, from (xy, X2, t) to (ki, k2, ®), isused
in Section 2.1.4. It has the form

o] e8] o] .
f (k1 ko, Xa, w) = / / / f(x, t) e kxatkoxe—ob gy, dx, dt (4a)
—00 J—00 J—00
and
1 o0 0 e8] i
fx. )= —— / f / f (ka, Ko, X3, w) € Kixatkaxe—eb) g, dk, dew.  (4b)
27)° J oo Jooo S0

This pair of equations is very useful, when it is possible to obtain a specific form for the
transformed solution f (ks, ko, X3, @). In Section 2.1.4wefound that an integrand equival ent

to (4b) hasthe form of aplane wave, and hence that such basic solutions can be summed to
provide more general solutions to the wave equation.
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FIGURE 3.3

f (t) and its amplitude spectrum | f (w)|. Valuesof T and 2 are indicated, and T2 = 4 in this case.
The approximate amplitude spectrum is given for w in the range +£20% around w = —Q and w = 2,
based on the formulasin (3.15). Also shown is the function H (t) exp(—t/T) and its spectrum. Note
the highest values of | f (w)| occur at w = 2, though these peaks in the spectrum are not very sharp
in this case.

the same information, albeit displayed in a different way, it makes sense to use the same
symbol, f. To remind ourselves of how the information is displayed, we refer to it either
as f(t) or f(w).

To illustrate the “uncertainty principle,” we return to a discussion of equations(3.13)
and (3.14). An example of f (t) and its amplitude spectrum f (w) for a particular choice of
T and Q isshown in Figure 3.3.

We begin by noting that f (w) haspolesat w = +Q +i/T, which are near the real »
axisif T islarge. It followsthat an approximationto f (w) is given by

1
f = f —-Q
approx f (w) ot AT or w near
-1

T 2w—Q+2/T

(3.15)
for w near + Q.

Thepower spectrumof f, definedas| f (w)|?, (i.e. thesquareof theamplitude spectrum)
is therefore concentrated near the two frequency values w = £ if T islarge, and is then
approximated by

1
w4+ Q)2+1/T7
1
Y(w—Q)2+1/T7

forwnear — Q

for w near 2,
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3.3 Fourier Transforms

peak power level ——— width, at half peak power

half pesk level —»

w=Q : —>
w Increasing
FIGURE 3.4

An illustration defining the width of a peak at the half-power level. The peak here is centered at
=K.

which each have peaks of height T2/4.

It followsthat thevalue of | f (w)|?atw = Q2 + 1/ T hashalf the power of the maximum
located at w = . The width of the region of significant values of | f (w)|?, concentrated
near v = Q, istherefore 2/T if the width is measured at « values where the power level
has dropped to half its maximum. The definition of the “width at half power” is shown in
Figure 3.4.

The width of the original function f (t) is effectively T. So we see that the product of
the width of the range of t values where f (t) is significant, times the width of the range of
o values where f () is significant, is constant. As one width is increased, the other must
shrink. Thisisthe result we refer to as the uncertainty principle for Fourier transforms: we
cannot obtain information confined over a short range of t values, that is a so confined over
ashort range of w values.

Going on to see how the principle is expressed in practice for the functions f (t) and

f (w) of equations (3.13) and (3.14) with different valuesof T, Figure 3.5 shows asituation
where information is spread out in time and concentrated in frequency. Figure 3.6 shows
the opposite situation — an example where information is restricted in time and spread out
in frequency.

Figures3.3, 3.5and 3.6 also show g(t) = H (t)e~"/T and itsamplitude spectrum, which
is
based on g(w) =

19(w)| = (3.16)

1 i
If1/T <« w,(3.16) givesg(w) = 1/(—iw), whichinturnimpliesinthetimedomainthat
g(t) = H(t), theunit step function. Thisisthe situation shownin Figure 3.5. If jw| < 1/T,
(3.16) gives g(w) = T, which in turn impliesin the time domain that g(t) = Té§(t). Thisis
the situation shown in Figure 3.6. These two results are examples of the general idea that
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10 5 /\ Time domain
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f (t) and its amplitude spectrum | f (w)|, for T2 = 80. The amplitude spectrum is strongly peaked
a w=— and w = Q. The approximation given in (3.15) is very accurate in this case and gives
aresult (not shown here) that is indistinguishable from the exact spectrum. Information is widely
spread out in the time domain. (The range of t is shown, for only afraction of the range for which
f (t) has significant values). Note also that the function g(t) is approximately the unit step function
H (t) in this case. Its amplitude spectrum is approximately 1/w. The dependence of |g(w)| on a
power of w, namely on w1, is hard to see in this Figure but can be easily made apparent if we plot
log |g(w)| versus log w, because then the values of log |g(w)| would fall on a straight line of slope
—1. Amplitude spectra are often shown with log— og scales in order to reveal underlying power-law
dependences.

if we look at the properties of a function of time over very long time scales, then in the
frequency domain these properties are apparent from the spectrum at very low frequencies
— and vice versa: properties of g(t) over short time scales (for example, it may have a step
discontinuity) are also apparent from study of g(w) at high frequency (in the present case,
behavior like 1/(—iw)).

3.3.2 AFUNCTION WHOSE SHAPEISSIMILARTO THE SHAPE OF ITSFOURIER TRANS-
FORM

In statistics we often use so-called Gaussian curves, of the form

_x2
e 202

o2

Thewidth of the Gaussianiscontrolled by o. For f asaprobability density, f (x) dx would

be the probability of f lying between x and x + dx. Since [ e dx = /7 /X (see

Box 3.2), thereisunit areaunder the function givenin (3.17), indicating that the probability

of f lying between —oo and o0 is 1, as we would expect for any probability density.
The Fourier transform of f (x), namely g(k), is given by

f(x) = (3.17)
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FIGURE 3.6

f (t) and its amplitude spectrum | f (w)|, for TS = 0.2. The amplitude spectrum is spread out
over awide range of w values (it is shown here, and in two previous Figures, only for the range
—12x Q <w < 1.2 x Q). The approximation for | f (w)| given in equation (3.15) is very poor,
sincethe polesat w = +£Q +i/T are not near the real » axis. In the time domain, information is
limited to only a short range of t values. Note that the function g(t) isapproximately T x §(t) inthis
case. Its amplitude spectrum is approximately a constant value, T.

x2

o] . 0 a 2,2 .
(k) :/ F ) ek dx=/ % e dx
—00 —c0 O

52K2 00 x_ioky2
= L e 2k/ e(ﬁa+ﬁ) dx

O‘\/Zﬂ —0o0
1

=e 2. (3.18)

(Additional details of the above evaluation are given in Section 6.1.3, in the context of
evaluating asimilar integral, given in (6.28).)

We see here that the Fourier transform of a Gaussian isitself a Gaussian, but now the
width of the transformed Gaussian is controlled by 1/0. A number of examplesof f and g
are shown in Figure 3.7 with different values of o .

We note that g(0) = 1. We should expect this from a remark made above, about the
area under the Gaussian curve (3.17) being unity, because the area under f(x) is given
by ffooo f(x) dx and in genera this is just g(k) evaluated for k = 0 (see the first of
equations (3.18) with k = 0). So, the area under afunction is equal to the long wavelength
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BOX 3.2
The area under a Gaussian curve

To prove

o0 —XZ B z
ﬁme* dx_\/: (1)

we first consider the case 1 = 1 and define | = [ e°dx. Then

P ® e o 2 w2 y2
I :/ e dx/ ey dy:// e~ *+YIdx dy.
—00 —00 whole x—y plane

But, integrating over the whole xy plane can be done using cylindrical coordinates (r, ¢)
where r cos¢ = X, rsing =y, and r? = x2 4 y2. Since the integrand for 12 depends
only upon r we can integrate over the whole x — y plane by summing contributions
from concentric area elements 2xrdr, and 12 =27 (% e™'r dr. With s=r2, 12=
S=00

e—s
mfy e%ds=mx -

=, and s0 | = /7. To prove (1), we simply replace +/Ax
s=0

by y. Then

[ eax= [ e axi=1vi= i

or long period limit of the spectrum (using terminology appropriate for functions of space
or time). In the present case, the area under the original curve (3.17) is unity, therefore we
must have g(0) = 1.

We see from Figure 3.7 that the width of the function in the x-domain goes up as o
increases, and the width of the function in the k-domain correspondingly goes down. This
is another example of the general point made in the previous subsection, about a trade-off
in the way that information is concentrated in one domain or the other.

3.4 More on Delta Functions

Let us go back to the “substitution” property of the Kronecker delta function, defined in
Chapter 1. From the first of (1.8), this property is

Aidij = Aj. (3.19)

Oneway to think of the summation contained in the left-hand side here, isthat it represents
aweighted average of al the different A; values (i =1, 2, 3). Because §jj = 0 fori # |,
the only contributing term isthe one for whichi = j. The summation over i, then givesthe
right-hand side value A;.

When we investigated Fourier seriesin Section 3.2 we obtained a generalization of the
above, in that
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FIGURE 3.7

f (x) (top) and its spectrum g(k) (bottom), from equations (3.17) and (3.18), for four different values
of o. If o =1, the original function and its transform have the same half-width. But for any other
vaue of o, one function has a half-width wider than the case o = 1 and the other function has a
half-width that is narrower.

1 %L ir(n—m)Xw L
il &2 dX = Smn (3.20)
2

and thisagainisaKronecker deltafunction (equal to 0 for m # n; equal to 1 for m = n). But
novm=12...,ccandn=1,2, ..., co.Sonow theinner product space hasacountably
infinite number of dimensions.

Again, we have the substitution property

m=1

Paul Dirac took a major step in generalizing (3.19) and (3.21) to develop what today
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74 Chapter 3 / ON FOURIER TRANSFORMS AND DELTA FUNCTIONS

we call the Dirac deltafunction §(x — X), with the property
oo
/ f(X)6(x — X)dx = f(X). (3.22)
—00

Thisdeltafunctionisagain afunction of two variables, but now they aretwo continuous
variables (x and X), instead of theinteger variablesi and j of (3.19), or integer variablesm
and n of (3.21). We should not let such superficia differences in notation obscure the fact
that there are strong similarities between (3.19), (3.21), and (3.22).

Another way to convey these results, is to note that the defining properties of a one-
dimensional Dirac deltafunction §(x, X) are that

§(X, X)=0 if x#£ X, and

00 (3.23)
/ §(X, X)dx =1.

Itisonly anotation convention, that we write §j; rather that 6(i — j); and usually we
write §(x — X) rather that 6xx or §(x, X). All these delta functions are mostly equal to
zero, and have non-zero value only where the difference in independent variables (i and j,
m and n, x and X) isequal to zero.

All of (3.19), (3.21), and (3.22) are examples of weighted averaging, in which the
weights are so strong for one particular value (i = j, m=n, x = X), and so weak for all
other values (i # j, m#n, X # X), that only one value of the original function has any
importance (A fori = j; cm form=n; f (x) for x = X).

What is particularly strange about the Dirac delta function § (X — X), isthat it is zero
everywhere as a function of x (provided x # X); but at x = X itsdlf, it has such a strong
value (super infinite), that it gives afinite result when we do the integration in (3.22). These
properties of the Dirac delta function were for many years a challenge that was associated
with new developmentsin thetheory of integration of generalized functions. Deltafunctions
of acontinuous variable can be thought of asthelimit, ase — 0, of asequence of functions

like
B(x, X,e) =0 forx < X — 3e
_1! for X —2e <x< X+ 3e (3.24)
&

=0 for X < x,

or
G0 X, 8) = =52 (3.25)
X, K, €)= e 2 . .
V2re

At any fixed value of ¢, B(x, X, ¢) and G(X, X, &) have unit areain the sense that

o o0
/ B(x, X, &) dx = / G(x, X,e)dx =1.
—00

—0Q
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Problems

Also,
lim B(x, X, &) = lim G(x, X, &) =0for x £ X.
e—0 e—0

These functions, B and G, are two of many such functions that can be used to establish the
basic properties of the Dirac delta function.

In Section 6.1.3 and Box 6.1, we discuss additional features of Dirac delta functions
in time and space.

Suggestions for Further Reading

Snieder, Roel. a Guided Tour of Mathematical Methods for the Physical Sciences, pp 186—
194 for delta functions, pp 200-211 for Fourier analysis. Cambridge, UK: Cambridge
University Press, 2001.

Problems

3.1 Inthe casethat f(t) isreal, the Fourier transform f (w) defined for example by
equation (1) of Box 3.1 is subject to constraints that allow us to avoid the use of
negative frequencies, and to work with the real part of f(w) aone, rather than
with the complex-valued transform, f (w). The reader is asked to obtain the main
results as follows, when f (t) isreal:

a) If f(w) is expressed in terms of its real and imaginary parts by f(w) =

N[ f ()] +i3[f(w)], show that R[] is even in w, and J[ f] is odd. That
is, show

R f(—o)] = +R[F(@)] and I[f(—w)] = —3[f()].

1
b) Show that 3[ f ()] = — /2 (S[ f ()] coswt — R[ f ()] Sinwt) do.
¢) Show that result a), apgﬁedto result b), doesgiveJ[ f (t)] = Oandthat therefore
a) and b) are consistent with f (t) being purely real.
d) Show that f(t) = — [0 (N[ f(w)] coswt + [ f (w)] sinwt) do.
21 7T
€) Hence show that

f(t)= % /(;OO R[ f (w)] coswt dw.

[This is the key result that alows us to work with only with 0 < w when
evaluating f (t) asasummation over its frequency components.]
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