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CHAPTER 4
Spherical Coordinates, and Surface

Harmonics

So far we have emphasized the use of cartesian coordinates, (x1, x2, x3). But for many
practical purposes, especially in the Earth Sciences when we are considering large-scale
problems such as the study of global circulation or the propagation of seismic waves to
great distances, it is more appropriate to work with spherical polar coordinates (r, θ, φ).

Expressions such as ∇V, ∇ · u, ∇ × u, ∇2φ, ∇2u, which are independent of any
coordinate system, are easily interpreted in cartesians in terms of partial derivatives
with respect to x1, x2, and x3. Interpretation of the same expressions in terms of partial
differentiation with respect to r, θ , and φ is somewhat more difficult, because the directions
in which of each of these three coordinates increase, are themselves functions of position.
We can label these three directions as the unit vectors r̂, θ̂θ, and φ̂φ, respectively. They
correspond to the unit vectors x̂1, x̂2, and x̂3 for cartesians (Mark Cane uses i, j, k). Taking
into account the fact that r̂, θ̂θ, and φ̂φ vary in direction as a function of position, unlike the
vectors x̂1, x̂2, and x̂3, it can be shown for the scalar V = V (x) that

∇V =
(

∂V

∂r
,

1

r

∂V

∂θ
,

1

r sin θ

∂V

∂φ

)
, (4.1)

and for the vector u = u(x) that

∇ · u = 1

r2

∂ (r2 ur)

∂r
+ 1

r sin θ

∂ (sin θ uθ)

∂θ
+ 1

r sin θ

∂uφ

∂φ
. (4.2)

Combining these two results, it follows that the Laplacian operator, applied to a scalar,
is interpreted in spherical polar coordinates as

∇2V = 1

r2

∂

∂r

(
r2 ∂V

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+ 1

r2 sin2 θ

∂2V

∂φ2
. (4.3)

Surface harmonics are the special functions that are used to describe the lateral variation
of properties over the surface of a sphere. Thus, surface harmonics are functions of (θ, φ).
Symbolized in various different ways, such as Y m

l (θ, φ) or Pm
l (cos θ)e±mφ, these functions

are used, in spherical geometry, in essentially the same way that special functions such
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78 Chapter 4 / SPHERICAL COORDINATES, AND SURFACE HARMONICS

BOX 4.1
Spherical surface harmonics

A long list of important properties can be derived for the special functions 	(θ)
(φ) that
separate the horizontal variation of solutions to c2∇2 P = ∂2 P/∂t2 in spherical geometry.
We here outline the formal derivation of some of these properties, which are needed
frequently in geophysics because of the need to define continuous bounded functions over
spherical surfaces within the Earth.

Trying a solution P(x, t) = R(r)	(θ)
(φ) exp(−iωt), we find from (2.25) that

sin2 θ

R

d

dr

(
r2 d R

dr

)
+ sin θ

	

d

dθ

(
sin θ

d	

dθ

)
+ ω2r2

c2
sin2 θ = − 1




d2


dφ2
.

The left-hand side is independent of φ, hence (1/
)(d2
/dφ2) is a constant. Solving
for 
 and noting that 
(φ) must be periodic with period 2π if P(x, t) is to be a single-
valued function of position, we find that the eigenfunctions associated with the azimuthal
coordinate are


 = eimφ m = 0, ±1, ±2, ±3, . . . (1)

The equation in (r, θ) for R and 	 is now

1

R

d

dr

(
r2 d R

dr

)
+ ω2r2

c2
= m2

sin2 θ
− 1

sin θ	

d

dθ

(
sin θ

d	

dθ

)
,

where it has been arranged that the left-hand side depends only on r and the right-hand side
only on θ . The equation can thus be satisfied for all (r, θ) only if there is some constant K
for which

d

dr

(
r2 d R

dr

)
+

(
ω2r2

c2
− K

)
R = 0 (2)

and

d

dθ

(
sin θ

d	

dθ

)
=

(
m2

sin2 θ
− K

)
sin θ	 (3)

We continue with an analysis of the 	-equation, beginning with:

THE CASE m = 0

The function 
(φ) is constant, and the solution P(x, t) has axial symmetry. 	 satisfies
d/dθ(sin θd	/dθ) = −K sin θ	, and it is convenient to get away from the angle θ and
use instead the variable x = cos θ , since then the trigonometric terms in the 	-equation are
suppressed. We find
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SPHERICAL COORDINATES, AND SURFACE HARMONICS 79

BOX 4.1 (continued)

(1 − x2)
d2	

dx2
− 2x

d	

dx
+ K	 = 0, (4)

known as the Legendre equation. For general values of the constant K , the solutions have
singularities at the end-points of the range −1 ≤ x ≤ 1. This is the range corresponding to
0 ≤ θ ≤ π , which is needed to describe position in the Earth. But for certain special values
of K , there are nonsingular solutions 	 that turn out to be polynomials in x .

To prove these statements, one assumes a power series solution exists in the form

	(x) = b0xk + b1xk+1 + . . . = xk
∞∑

i=0

bi x
i (b0 �= 0). (5)

The challenge here is to find the value of k (the power of x which starts the series), and all
the coefficients. Substituting (5) into (4) and equating the coefficient of each power of x to
zero, we find

b0k(k − 1) = 0, (6)

b1(k + 1)k = 0, (7)

and, in general,

bi+2 = bi

[
(k + i)(k + i + 1) − K

(k + i + 1)(k + i + 2)

]
. (8)

From (8) we see in general that |bi+2/bi | → 1 as i → ∞. Thus, by comparison with a
geometric series, there is convergence of (5) provided −1 < x < 1. But what happens at
x = ±1 (θ = 0 or π)? It can be shown, for such x values, that the infinite series for 	(x)

will diverge, unless one of the even-suffix bi is zero and one of the odd-suffix bi is zero.
(For then all further bi are zero, so that the infinite series is reduced to a polynomial, which
clearly does “converge” for all values including the special values x = ±1.)

Given that b0 �= 0, (6) requires k = 0 or 1.
Looking at (8) with k = 0, we see that the only way to stop the even power series from

having an infinite number of terms is if K = i(i + 1) for some even integer i . Then bi �= 0
but bi+2 = bi+4 = . . . = 0. The only way to stop the odd power series is to require that
b1 = 0, which via (8) means that all coefficients of odd powers vanish, and also (7) is
satisfied.

Looking at (8) with k = 1, we see that the power series for 	 starts with the term b0x .
The only way to stop the odd power series is to require that K = (i + 1)(i + 2) for some
even integer i . If k = 1, then (7) requires that b1 = 0, and it follows from (8) that there are
no even terms.

We have obtained the important result that the constant K , which was introduced to
separate the radial equation from the 	-equation, must in general be the product of two
successive integers. Otherwise, the 	-equation does not have a solution valid throughout
the range 0 ≤ θ ≤ π .
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80 Chapter 4 / SPHERICAL COORDINATES, AND SURFACE HARMONICS

BOX 4.1 (continued)

Furthermore, if K = l(l + 1) and l is even, then it is the even powers of x that make up
the solution. Similarly, if K = l(l + 1) and l is odd, then the solution consists only of odd
powers of x . In either case, the solution for 	 is a polynomial of order l, with other terms
of order l − 2, l − 4, . . . , with a lowest-order term of order 1 (if l is odd) or 0 (if l is even).
The customary choice for b0 is made by requiring

	(x) = 1 for x = 1. (9)

The polynomials that result are the Legendre polynomials. Writing them out as a sum
of descending powers, a great deal of manipulation gives, for l either even or odd, the
expression

	 = Pl(x) = (2l)!

2l(l!)2

[
xl − l(l − 1)xl−2

2(2l − 1)
+ l(l − 1)(l − 2)(l − 3)xl−4

2 · 4 · (2l − 1)(2l − 3)
− · · ·

]
, (10)

stopping at either x or 1 (times a constant) as the last term. The first few Legendre
polynomials are

P0(x) = 1, P1(x) = x, P2 = 1
2 (3x2 − 1),

P3(x) = 1
2 (5x3 − 3x), P4(x) = 1

8 (35x4 − 30x2 + 3),

and, in general,

Pl(x) = 1

2l!dxl
(x2 − 1)l,

which is known as Rodrigues’ formula.

THE CASES m �= 0

We shall initially assume the integer m is positive. Then with x = cos θ in (3), we find

d

dx

[
(1 − x2)

d	

dx

]
= m2	

1 − x2
− K	. (11)

We might attempt a power-series solution like (5). However, this approach becomes difficult
because the formula for bi+2 turns out to involve not just bi (as it did before for 	 with
m = 0), but also bi+1, and the general solution of such a three-term recursion relation is quite
complicated. To guess at an alternative approach, we recall that for m = 0 the properties of
	 near x = ±1 are important. They may also be expected to be important for m > 0, by
inspection of the coefficients in (11). We thus turn to a brief examination of 	 near x = ±1.
With ε = x ± 1 and ε small, (11) is approximately

ε
d2	

dε2
+ d	

dε
− m2	

4ε
= 0,

which has solutions 	 = εm/2 and ε−m/2. The second solution is not well-behaved at ε = 0,
and can be rejected. It seems then that 	 should have zeros of order m/2 at x = ±1. They
can both be factored out by writing

	(x) = (1 − x2)m/2 A(x),

and we can hope to study 	 by studying A(x).
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BOX 4.1 (continued)

This approach turns out to be fruitful, because A satisfies the ordinary differential
equation

(1 − x2)
d2 A

dx2
− 2(m + 1)x

d A

dx
+ [K − m(m + 1)]A = 0, (12)

which does have just a two-term recursion formula for the coefficients in an expansion of
the form A(x) = xk ∑∞

i=0 ci xi . The recursion formula turns out to be

ci+2 = [(i + m)(i + m + 1) − K ]

(i + 1)(i + 2)
ci .

In general, this formula will generate two series-solutions for A(x) (one of even powers
of x , and one of odd powers). If these series were not terminated at some power xr , they
would behave like (1 − x2)−m. The requirement that 	 have no singularities in −1 ≤ x ≤ 1
(0 ≤ θ ≤ π) thus leads to the result cr+2 = 0 for some r . The series ends with the power
xr . It begins with the power x0 (i.e., a constant) if r is even, and with the power x if r is
odd. Thus

(r + m)(r + m + 1) = K ,

and K has eigenvalues that again (i.e., as for m = 0) are the product of consecutive integers;
r ≥ 0, m ≥ 0, hence we take K = l(l + 1) for some integer l ≥ 0. Since r ≥ 0, we find also
the important result m ≤ l.

Since K takes the same eigenvalues if m = 0 or m > 0, the radial function R(r),
determined from (2), is unchanged by dropping the requirement of axial symmetry. So
the radial functions are independent of m.

We have shown that 	(x) = (1 − x2)m/2 A(x) where A is now a polynomial in x . There
is no difficulty in finding the coefficients of this polynomial. However, a quick way to get an
explicit formula for A is available, since, if the equation satisfied by Legendre polynomial
Pl (see (4)) is differentiated m times, the result is

(1 − x2)
dm+2

dxm+2
Pl − 2(m + 1)x

dm+1

dxm+1
Pl + [l(l + 1) − m(m + 1)]

dm

dxm
Pl = 0.

Comparing this with the equation (12) satisfied by A(x), we see that a solution for A is
A(x) = dm Pl(x)/dxm. Since Pl(x) is a polynomial involving nonnegative powers of x ,
there is no danger of A(x) blowing up anywhere in −1 ≤ x ≤ 1.

The product (1 − x2)m/2dm Pl(x)/dxm is therefore a solution for the angular function
	(x). It is called the associated Legendre function, denoted by Pm

l (x).
The equation (11) for 	 depends upon m only via m2. Therefore, if m < 0, the

nonsingular solution must be proportional to P |m|
l (cos θ). We adopt the convention

P−m
l (x) = (−1)m (l − m)!

(l + m)!
Pm

l (x), (13)

in which the constant of proportionality has been chosen so that

Pm
l (x) = (1 − x2)m/2

2ll!

dl+m

dxl+m
(x2 − 1)l (14)

applies for all (l, m) such that −l ≤ m ≤ l.
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82 Chapter 4 / SPHERICAL COORDINATES, AND SURFACE HARMONICS

BOX 4.1 (continued)

Several books have been written on properties of Pl and Pm
l (e.g., Robin 1957; Hobson,

1955), and Wiggins and Saito (1971) and Masters and Richards-Dinger (1998) showed
how to compute these functions efficiently. Summarizing the most important formulas, it is
known that

1

(1 + r2 − 2r cos θ)1/2
=

∞∑
l=0

rl Pl(cos θ) 0 < r < 1 (15)

(l − m + 1)Pm
l+1(x) − (2l + 1)x Pm

l (x) + (l + m)Pm
l−1(x) = 0 (16)

(1 − x2)
d

dx
Pm

l (x) = (l + 1)x Pm
l (x) − (l − m + 1)Pm

l+1(x). (17)

It is convenient to define fully normalized surface harmonics

Y m
l (θ, φ) = (−1)m

[
2l + 1

4π

(l − m)!

(l + m)!

]1/2

Pm
l (cos θ)eimφ (18)

for integers l ≥ 0 and integers m such that −l ≤ m ≤ l. Then

Y −m
l (θ, φ) = (−1)m[Y m

l (θ, φ)]∗,

the ∗ denoting a complex conjugate.
The Legendre functions are orthogonal, as are the azimuthal functions eimφ, and the

normalizing factor in (18) has been chosen so that the orthogonality of the Y m
l (θ, φ) takes

a simple form, namely∫ 2π

0
dφ

∫ π

0
[Y m

l (θ, φ)]∗Y m′
l ′ (θ, φ) sin θ dθ = δll ′δmm′. (19)

(Note: this is an integration over the surface of a sphere of unit radius.)
If ψ is the angle between the two directions out from the center of coordinates to

the points specified by (θ, φ) and (θ ′, φ′) in spherical polars, then cos ψ = cos θ cos θ ′ +
sin θ sin θ ′ cos(φ − φ′), and

Pl(cos ψ) = 4π

2l + 1

∑
−l≤m≤l

Y m
l (θ, φ)[Y m

l (θ ′, φ′)]∗. (20)

In the theory for excitation of normal modes by a point source, we need values of Y m
l

and some of its derivatives at θ = 0. A key result is

Pm
l (cos θ) → 1

2mm!

(l + m)!

(l − m)!
θm as θ → 0, for m ≥ 0.

Finally, we comment that surface harmonics provide the horizontal wavefunctions
needed to study wave propagation in spherical geometry, and in this sense play roles similar
to those of cos(kx x + ky y) and Jm(kr)eimφ for cartesian and cylindrical geometry.
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SPHERICAL COORDINATES, AND SURFACE HARMONICS 83

as ei(k1x1+k2x2), or sin k1x1 sin k2x2, are used in cartesian geometry, where the horizontal
variables are (x1, x2).

For example, consider the scalar wave equation (2.25), for pressure in a fluid:

1

c2

∂2 P

∂t2
= ∇2 P. (2.25 again)

A detailed derivation of the basic properties of the Legendre polynomials Pl(cos θ), the
associated Legendre functions Pm

l (cos θ), and surface harmonics Pm
l (cos θ)e±iφ, is given

in Box 4.1. These functions provide the separated solutions 	(θ)
(φ), needed to obtain
solutions to (2.25) in the form

P(x, t) = R(r)	(θ)
(φ)T (t).

Figure 4.1 shows a number of examples of Legendre functions, plotted as large-
amplitude topography added to a circle.

A useful way to think of the results derived in Box 4.1, is that the properties of surface
harmonics are derived directly from the equations these special functions satisfy, in much
the wame way that we could (if we chose) investigate the properties of the special functions

sin λx and cos λx knowing only that these functions satisfied the equation
d2 f

dx2
+ λ2 f = 0.

For example, just from this equation, and a normalization, we could find the power series

sin λx = λx − λ3x3

3!
+ . . . and cos λx = 1 − λ2x2

2!
+ . . ., and other properties.

Principal results of Box 4.1, in application to (2.25), are that:

(i) The equation for T is
d2T

dt2
+ ω2T = 0, solved by T = e±iωt .

(ii) The equation for 
 is
d2


dφ2
= constant × 
, solved by 
 = e±imφ where m is an

integer (since we require that 
 be a single-valued function of position).

(iii) The equation for 	 is
d

dr

(
sin θ

d	

dθ

)
=

(
m2

sin2 θ
− K

)
sin θ 	, which has a well-

behaved solution 	(θ) for all θ values in the range 0 ≤ θ ≤ π , but only if K is a
product of consecutive integers: K = l(l + 1). Note that −l ≤ m ≤ l. (If K has any
value other than l(l + 1), the solution for 	(θ) has singularities at θ = 0 and θ = π .)

(iv) The equation for R is
d2(r R)

dr2
+

(
ω2

c2
− l(l + 1)

r2

)
r R = 0. (This result follows

from (2) of Box 4.1.) Note that R here depends on l but not on m. We sometimes
write this solution as Rl(r) to signify the dependence on l (but not on m).

We can get some perspective on these results, if we consider some general properties of

solutions to ∇2 P = 0 (the Laplace equation) or ∇2 P + ω2

c2
P = 0 (the Helmholtz equation),

in both cartesians and spherical polars.
For example, the Laplace equation has solutions in cartesians given by

P(x1, x2, x3) = e±ik1x1e±ik2x2e±
√

k2
1+k2

2 x3, (4.4)
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r = 1

r = 1 — 0.2 P (cos θ)
2

r = 1 — 0.2 P (cos θ)
3

r = 1 — 0.2 P (cos θ)
4

r = 1 — 0.2 P (cos θ)
5

r = 1 + 0.2 P (cos θ)
5

r = 1 + 0.2 P (cos θ)
7

r = 1 + 0.2 P  (cos θ)
10

r = 1 + 0.2 P  (cos θ)
14

θ

P (x) = 1    P (x) = x     P (x) = (1/2)(3x  — 1)     P (x) = (1/2)(5x   — 3x)       P (x) = (1/8)(35x   — 30x   + 3)
0

0

1

1

2

2

3

3

4

4

5 7

10

2

14

2 3 4

P (x) = (1/8)(63x   — 70x   + 15x)         P (x) = (1/16)(429x   — 693x  + 315x   — 35x)    5 3 7 5 3

P  (x) = (1/256)(46189x    — 109395x    + 90090x   — 30030x   + 3465x   — 63)

P  (x) = (1/2048)(5014575x    — 16900975x    + 22309287x    — 14549535x   

  

1012 8

6

10 8 6 4 2

14

4 2

(l + 1) P    (x) = (2l  + 1) x  P  (x)  —  l  P   (x). 
l+1 l l—1

From these formulas we see that the Legendre polynomials get complicated quickly, as their order
increases. But in practice, the actual polynomial expressions are not used for the computation of these 
shapes.  Instead, we can use a so-called recursion relation:

From  P (x) = 1  and P (x) = x we can quickly compute P (x) for a range of x values using this

relation.  Then we do P (x), then P (x), etc.  

A spreadsheet can easily give the table of values needed to produce Figures such as those above.

+ 4849845x   — 765765x   + 45045x   — 429)

FIGURE 4.1

which has horizontal oscillations and vertical growth or decay (if the horizontal wavenum-
bers k1 and k2 are real). The greater the spatial rate of horizontal oscillation, the greater the
rate of exponential growth or decay.

The same Laplace equation solved in spherical polars leads to

P(r, θ, φ) =
(

arl + b

rl+1

)
Pm

l (cos θ)e±imφ (4.5)
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(this is because the radial equation becomes
d2(r R)

dr2
= l(l + 1)

r2
r R, solved by R = rl or

R = r−(l+1)). But (4.5) is just like (4.4), in having horizontal oscillations (the angular
wavenumbers l and m are real integers), and vertical growth (the rl solution) or decay (like
r−(l+1)).

Note that when forming the double spatial derivatives that make up ∇2 P , the horizontal

derivatives give a negative result (−(k2
1 + k2

2) × P for cartesians, − l(l + 1)

r2
× P for

spherical polars), and the vertical derivatives must give the balancing positive result if
we wish to solve Laplace’s equation, i.e. to ensure that ∇2 P = 0.

Solutions to the Helmholtz equation are different in that there can be oscillations

in all three cartesian directions if the horizontal wavenumber
√

k2
1 + k2

2 is less than the

total wavenumber
ω

c
. The vertical wavenumber, given by

√
ω2

c2
− k2

1 − k2
2, is then real

(homogeneous waves). But if
√

k2
1 + k2

2 >
ω

c
, then k2

3 (the square of the vertical slowness)

has to be negative and there is growth or decay in the x3 direction (inhomogeneous waves),
not oscillation. In all cases, the spatial derivatives in the Helmholtz equation, applied to the
separated solution in cartesians, give the negative result −(k2

1 + k2
2 + k2

3) × P , matched by

the positive result
ω2

c2
× P because we always require k2

1 + k2
2 + k2

3 = ω2

c2
.

The Helmholtz equation solved by separation of variables in spherical polars uses
special functions called spherical Hankel functions for R = R(r). These solutions, written
as R(r) = h(1)

l+ 1
2
(ωr

c ) or R(r) = h(2)

l+ 1
2
(ωr

c ), also turn out to have oscillatory behavior in the

r direction if the horizontal wavenumber is less than the total wavenumber, but now the

inequality is expressed as
l + 1

2

r
<

ω

c
. If

l + 1
2

r
>

ω

c
, the spherical Hankel functions exhibit

exponential behavior. 1

The purpose of the above review, is to bring out some characteristic features of solutions

to ∇2 P = 0 and ∇2 P + ω2

c2
P = 0. In particular we can see the way in which the horizontal

and vertical derivatives contained in ∇2 must add either to zero (Laplace) or to a negative

result that is cancelled by the
ω2

c2
term (Helmholtz). With the Helmholtz equation, there are

options in that the solution can either oscillate or have exponential behavior in the vertical
direction, according to the rate of oscillation in the horizontal direction. With the Laplace
equation, there is no option: provided there is oscillation in the horizontal direction, growth
or decay is required in the vertical direction, not oscillation.

1. Spherical Bessel functions, written as jl+ 1
2
( ωr

c ), are commonly used also, for solving the
Helmholtz equation in spherical polars. Unlike spherical Hankel functions, they have no singularity at

the origin, r = 0. The relation between the three solutions is jl+ 1
2
( ωr

c ) = 1
2

[
h(1)

l+ 1
2
( ωr

c ) + h(2)

l+ 1
2
( ωr

c )

]
,

which, in the case that
l+ 1

2
r < ω

c , is like representing a standing wave as a sum of upward and downward
traveling waves.
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4.1 The utility of Legendre polynomials for representing information on a
spherical surface

It turns out that Legendre polynomials have properties of orthogonality that make them
ideally suited for representing information on the Earth’s surface as a function of latitude.

To see this result, suppose that we have a set of polynomials Pi(x), for i =
0, 1, 2, . . . ,∞ and Pi(x) is a polynomial of order i .

We ask, what the properties of the polynomials Pi(x) that would make the whole set
useful for purposes of representing any reasonable function f (x), defined on the interval
−1 ≤ x ≤ 1, by a series in the form

f (x) =
∞∑

i=0

ai Pi(x) ? (4.6)

To answer this question, we need to fill in some details. For example, we interpret (4.6)
to mean that the longer we make the finite series Sn(x), defined by

Sn(x) =
n∑

i=0

ai Pi(x), (4.7)

the better the fit of Sn(x) to f (x), in the sense that En is small, where we define

En ≡
∫ 1

−1
( f − Sn)

2 dx . (4.8)

Surprisingly, there is almost enough information in the above specification of how
we plan to use the polynomials, to actually define what the polynomials must be (that
is, to provide the coefficients for every power of x in each of the polynomials Pi(x), for
i = 0, 1, 2, . . . ,∞). What then, are these polynomials?

We want the coefficients ai to be chosen to minimize En. Therefore,

∂ En

∂ai
= −2

∫ 1

−1
( f − Sn)Pi dx = 0.

So

∫ 1

−1
f Pi dx =

∫ 1

−1


 n∑

j=0

a j Pj


 Pi dx . (4.9)

If we go on to the (n + 1)th approximation for f (x), that is, Sn+1(x), we add an+1 Pn+1(x)

to Sn(x) and hence an+1
∫ 1
−1 Pn+1 Pi dx to (4.9) above. Provided we decide not to change

the earlier coefficients ai for i = 0, 1, 2, . . . , n, used for Sn(x), when we come to evaluate
the additional coefficient an+1 needed for Sn+1(x), it follows that

∫ 1

−1
Pn+1(x)Pi(x) dx = 0 for 0 ≤ i ≤ n, (4.10)
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4.1 The utility of Legendre polynomials for representing information on a spherical surface 87

which is a statement that the (n + 1)th polynomial is orthogonal to all of the previous n
polynomials.

These n + 1 conditions are enough to determine the coefficients of the (n + 1)th

polynomial, up to an overall factor. And the overall factor itself can be determined if
we use a normalization, such as Pi(x) = 1 for x = 1.

To see that there is enough information here to obtain all the polynomial coefficients, let
us consider a few examples. Thus, we can take P0(x) = b0. The requirement that P0(1) = 1
then gives b0 = 1, so P0(x) = 1.

Next, take P1(x) = c0 + c1x . We know 0 = ∫ 1
−1 P0 P1 dx = (c0x + 1

2 x2)|1−1 = 2c0, and
1 = P1(1) = c0 + c1. So c0 = 0, c1 = 1, and P1(x) = x .

Then for P2(x) = d0 + d1x + d2x2, we have 0 = ∫ 1
−1 P0 P2 dx = 2d0 + 2

3 , 0 =∫ 1
−1 P1 P2 dx = 2

3 d1, and 1 = P2(1) = d0 + d2, giving P2(x) = − 1
2 + 3

2 x2.
We see in these three examples that we have indeed obtained the first three Legendre

polynomials. It is possible to obtain a formula for the j-th coefficient of the general
polynomial Pi(x), and in this way we find that the polynomials defined by the ability to
represent functions f (x) on the interval −1 ≤ x ≤ 1, are exactly the Legendre polynomials
defined by equation (10) of Box 4.1.

The above property of Legendre polynomials depends on the “goodness of fit” criterion
expressed by (4.8). But there are many other choices we could make — such as

En ≡
∫ 1

−1
( f − Sn)

2 w(x) dx . (4.11)

for some weight function, w(x).

If, for example, w(x) = 1√
1 − x2

, then the ends of the interval are strongly weighted.

If we represent a function f by f (x) = ∑
ai Pi(x) and minimize En defined in (4.11), the

polynomials can be shown to obey the orthogonality rule

∫ 1

−1
Pi Pjw(x) dx = 0 if i �= j. (4.12)

It is possible to show that this weight function leads to the Fourier sine series based on the
orthogonality

∫ π
2

− π
2

sin nθ sin mθ dθ = 0 for integers n �= m.

The polynomials obeying the weighted orthogonality rule (4.12) turn out to be given by
sin nθ = Pn(sin θ), sin mθ = Pm(sin θ), and note that if x = sin θ then dθ = dx√

1−x2
. [Check

this claim. It probably needs modification, since sin nθ is a polynomial in sin θ only if n is
an odd integer.]

Another example of a weight function, would be w(x) so strong that a fit at x = x0 is
all that matters. Then the rule∫ 1

−1
Pi Pjw(x) dx = 0 if i �= j,
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together with w(x) = δ(x − x0) leads to the Taylor series

f (x) = f (x0) + (x − x0) f ′(x0) + (x − x0)
2

2!
f ′′(x0) + . . .

Having seen with these examples that different weight functions lead to different sets
of polynomials, with each set enabling us to represent a general function f (x) in a different
way, we can ask what is special about the Legendre functions that we found when the
weight function is a constant. The physical interpretation here, is that all points in the range
−1 ≤ x ≤ 1 are being treated equally, in the goodness of fit expressed by (4.8). This also
means that each element of area on the surface of a sphere is being treated equally, when
we seek to express a function f (θ) (which could also be data on the surface of the sphere)
as a sum of Legendre functions. If for example the sphere is the surface of the Earth, with
radius r⊕, then the approximation

f (θ) =
n∑

i=0

ai Pi(cos θ) = Sn

is associated with a criterion that we minimize the squared difference between f and Sn,
integrated over the whole surface of the Earth. Thus, we minimize

En =
∫ π

0
( f − Sn)

2 2πr2
⊕ sin θ dθ = 2πr2

⊕
∫ π

0
( f − Sn)

2 sin θ dθ,

leading to the orthogonality result,

∫ π

0
Pi(cos θ)Pj(cos θ) sin θ dθ =

∫ 1

−1
Pi(x)Pj(x) dx = 0, if i �= j.

More generally, for surface harmonics Pm
l (cos θ)eimφ and Pm′

l ′ (cos θ)eim′φ we find

∫ 2π

0
dφ

∫ π

0
Pm

l (cos θ)Pm′
l ′ (cos θ)ei(m−m′)φ sin θ dθ = 0

unless l = l ′ and m = m′. The surface harmonic Y m
l (θ, φ) is proportional to Pm

l (cos θ)eimφ,
and normalized so that

∫ 2π

0
dφ

∫ π

0
[Y m

l (θ, φ)]∗Y m′
l ′ (θ, φ) sin θ dθ = δll ′δmm′,

as noted in equation (19) of Box 4.1.
Just as we can write a 3D vector A as a sum of its components via

A =
3∑

i=1

Ai x̂i

(where the basis vectors x̂i have unit length and are orthogonal, x̂i · x̂ j = δi j), and the
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coefficients are given by

Ai = A · x̂i,

we can similarly write any function f = f (θ, φ) defined on the surface of a sphere as the
sum of its components via

f (θ, φ) =
∞∑

l=0

l∑
m=−l

f m
l Y m

l (θ, φ) (4.13)

where the coefficients here are given by

f m
l =

∫ 2π

0
dφ

∫ π

0
f (θ, φ)[Y m

l (θ, φ)]∗ sin θ dθ.

In the Earth Sciences, it is routine to express scalars such gravity anomalies, topography,
temperature, and many other variables, as a sum of surface harmonics in the form (4.13).
Each harmonic component may then be interpreted according to the underlying physical
equation (a diffusion equation, Laplace’s equation, a Helmholtz equation) with which that
scalar variable may be associated. It is also possible to extend the concept of surface
harmonics, to study vector functions defined on a spherical surface. Global circulation
models, and models of seismic motion, routinely make use of vector fields that are analysed
using vector surface harmonics.

[I expect eventually to add material in this chapter, on the way to represent a delta
function on a sphere (as a sum over surface harmonics). Also, to discuss the generating
function for Legendre functions, and its relation to the way a point source is represented by
a sum of solid harmonics.]
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