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CHAPTER I

Spherical Coordinates, and Surface
Harmonics

So far we have emphasized the use of cartesian coordinates, (X1, X2, X3). But for many
practical purposes, especially in the Earth Sciences when we are considering large-scale
problems such as the study of global circulation or the propagation of seismic waves to
great distances, it is more appropriate to work with spherical polar coordinates (r, 9, ¢).

Expressions such as VV, V - u, V x u, V%, V2u, which are independent of any
coordinate system, are easily interpreted in cartesians in terms of partial derivatives
with respect to X3, X2, and x3. Interpretation of the same expressions in terms of partial
differentiation with respect tor, 6, and ¢ is somewhat more difficult, because the directions
in which of each of these three coordinates increase, are themselves functions of position.
We can label these three directions as the unit vectors f, 6, and ¢, respectively. They
correspond to the unit vectors X1, X», and X3 for cartesians (Mark Cane usesi, j, k). Taking
into account the fact that £, 6, and q?b vary in direction as a function of position, unlike the
vectors X1, X2, and X3, it can be shown for the scalar V = V (x) that

V 19V 1 3V
gy (W 1V 1 vy w
ar’r 90 rsing a¢

and for the vector u = u(x) that

V.u

19 (r2u 1 9 (sinfu 1 du
_ 1o« r)+ ( 9)+ g

= . 4.2
rz  ar rsiné 20 rsing a¢ (42)

Combining these two results, it follows that the L aplacian operator, applied to ascalar,
isinterpreted in spherical polar coordinates as

19 Vv 1 9 Vv 1 3%V
vV = = — [r2— ——  — (sno— - 4.3
r2or ( ar)+r25|n9 ae( 89>+r25in29 D2 (43)

Surface harmonicsarethe special functionsthat are used to describethelateral variation
of properties over the surface of a sphere. Thus, surface harmonics are functions of (0, ¢).
Symbolized in various different ways, suchasY,™(6, ¢) or B™(cos6)e*™, these functions
are used, in spherical geometry, in essentially the same way that special functions such
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78 Chapter 4 / SPHERICAL COORDINATES, AND SURFACE HARMONICS

BOx 4.1
Soherical surface harmonics

A long list of important properties can be derived for the special functions ® () ® (¢) that
separate the horizontal variation of solutions to c2V2P = 32P/9t2 in spherical geometry.
We here outline the formal derivation of some of these properties, which are needed
frequently in geophysics because of the need to define continuous bounded functions over
spherical surfaces within the Earth.

Trying asolution P(x,t) = R(r)®(0) @ (¢) exp(—iwt), we find from (2.25) that

sin6 d 2dR)  snod (. de +w2r25m29_ 1 d’®
R dr dr © do do c? T D de?’

The left-hand side is independent of ¢, hence (1/®)(d2®/d¢?) is a constant. Solving
for @ and noting that ®(¢) must be periodic with period 27 if P(x,t) isto be asingle-
valued function of position, we find that the eigenfunctions associated with the azimuthal
coordinate are

®=€™ m=0,+1+2 43, ... (1)
The equationin (r, ) for R and ® isnow
1d /[ ,dR) %2 m? 1 d /. de
Rdr dr c? snfe sind® do do

whereit has been arranged that the left-hand side depends only onr and the right-hand side
only on 6. The equation can thus be satisfied for al (r, ) only if there is some constant K

for which
d ,dR w?r?
a(r a>+(7—K R=0 &)
and
d /. de m? .
—_ )= —— —K
" (sme d9> (gnzg )sm&@ (3)

We continue with an analysis of the ®-equation, beginning with:

THECASEm=0

The function ®(¢) is constant, and the solution P(x, t) has axia symmetry. © satisfies
d/do(snfd®/do) = —K sinf®, and it is convenient to get away from the angle 6 and
useinstead the variable x = cosé, since then the trigonometric termsin the ®-equation are
suppressed. We find
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SPHERICAL COORDINATES, AND SURFACE HARMONICS

BOX 4.1 (continued)

2
(;TGZ)—ZX(;—?—FK@:O, (4
known as the Legendre equation. For general values of the constant K, the solutions have
singularities at the end-points of therange —1 < x < 1. Thisis the range corresponding to
0 <6 < 7, whichisneeded to describe position in the Earth. But for certain specia values
of K, there are nonsingular solutions ® that turn out to be polynomialsin x.

To prove these statements, one assumes a power series solution existsin the form

(1—x?

O() =box* + bx T+ . =x*> X' (b #0). (5)
i=0

The challenge here isto find the value of k (the power of x which starts the series), and all
the coefficients. Substituting (5) into (4) and equating the coefficient of each power of x to

zero, we find
bok(k — 1) =0, (6)
bi(k + Dk =0, (7)
and, in general,
[ k+iDk+i+1) —K
b'+2_b'[(k+i+1)<k+i+2)]' @

From (8) we see in general that |bj2/bi| — 1 asi — oco. Thus, by comparison with a
geometric series, there is convergence of (5) provided —1 < x < 1. But what happens at
X =41 (60 =0or x)? It can be shown, for such x values, that the infinite series for ©(x)
will diverge, unless one of the even-suffix by is zero and one of the odd-suffix b; is zero.
(For then al further b are zero, so that the infinite seriesis reduced to a polynomial, which
clearly does“ converge” for all valuesincluding the special valuesx = +1.)

Given that bg # 0, (6) requiresk =0 or 1.

Looking at (8) with k = 0, we see that the only way to stop the even power series from
having an infinite number of termsisif K =i(i 4+ 1) for someevenintegeri. Thenb; £ 0

but bj 2 =bj;4=...=0. The only way to stop the odd power series is to require that
by = 0, which via (8) means that all coefficients of odd powers vanish, and aso (7) is
satisfied.

Looking at (8) with k = 1, we see that the power series for © starts with the term bpx.
The only way to stop the odd power seriesisto require that K = (i + 1)(i + 2) for some
evenintegeri. If k =1, then (7) requiresthat by = 0, and it follows from (8) that there are
no even terms.

We have obtained the important result that the constant K, which was introduced to
separate the radial equation from the ®-equation, must in general be the product of two
successive integers. Otherwise, the ®-equation does not have a solution valid throughout
therange0 <0 < 7.
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80 Chapter 4 / SPHERICAL COORDINATES, AND SURFACE HARMONICS

BOX 4.1 (continued)

Furthermore, if K =1(I + 1) and | iseven, then it is the even powers of x that make up
the solution. Similarly, if K =1(l + 1) and | is odd, then the solution consists only of odd
powers of x. In either case, the solution for ® is a polynomial of order I, with other terms
of orderl — 2,1 — 4, ..., with alowest-order term of order 1 (if | isodd) or O (if | iseven).
The customary choice for bg is made by requiring

Ox)=1 forx =1 9

The polynomials that result are the Legendre polynomials. Writing them out as a sum
of descending powers, a great deal of manipulation gives, for | either even or odd, the

expression
o @ 1 =Dx2 1 =D —2)( - 3K
©=RM=mn2 [X T 22— 2a2.@-va-3 | W0

stopping at either x or 1 (times a constant) as the last term. The first few Legendre
polynomials are

Po(x) =1, P1(x) = X, P=1(3x*- 1),
Psx) = 3(5x° = 3x),  Pa(x) = 5(35x* — 30x2 + 3),
and, in general,

1

2 |
o XL

RX) =

which is known as Rodrigues' formula.

THE CASESm=#£0

We shall initially assume the integer m is positive. Then with x = cosé in (3), we find
d , dO m’e
d—x[(l—x)d—x]_l_xz—KO. (11

Wemight attempt a power-series solution like (5). However, thisapproach becomesdifficult
because the formula for b .2 turns out to involve not just b (as it did before for ® with
m = 0), but also b; ;1, and the general solution of such athree-termrecursionrelationisquite
complicated. To guess at an aternative approach, we recall that for m = 0 the properties of
® near X = 1 are important. They may also be expected to be important for m > 0, by
inspection of the coefficientsin (11). We thusturn to a brief examination of ® near x = +1.
With e = x £+ 1 and ¢ small, (11) is approximately

d2e N de m2e 0
e———5 + — — =0,
de2  de 4e

which has solutions © = £™2 and ¢ ~™2. The second solution is not well-behaved at ¢ = 0,
and can be rejected. It seems then that ® should have zeros of order m/2 at x = £1. They
can both be factored out by writing

O(X) = (1 - x»)™2A(x),

and we can hope to study © by studying A(x).
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SPHERICAL COORDINATES, AND SURFACE HARMONICS

BOX 4.1 (continued)

This approach turns out to be fruitful, because A satisfies the ordinary differential
equation
d2A dA
2 —
(1—x)W—Z(erl)xd—XJr[K—m(m+1)]A_0, (12)
which does have just a two-term recursion formula for the coefficients in an expansion of
the form A(x) = x* 32 ¢ix'. The recursion formulaturns out to be

G +mi +m4 1) — K]
- (i+Di+2

In general, this formula will generate two series-solutions for A(x) (one of even powers
of x, and one of odd powers). If these series were not terminated at some power x", they
would behavelike (1 — x%)~™. The requirement that © have no singularitiesin—1<x <1
(0 <0 < ) thus leads to the result ¢; 2 = 0 for somer. The series ends with the power
X" It begins with the power x° (i.e., a constant) if r is even, and with the power x if r is
odd. Thus

+2

r+mr+m+1)=K,

and K haseigenvaluesthat again (i.e., asfor m = 0) arethe product of consecutiveintegers,
r >0, m> 0, hencewetake K =1(l 4+ 1) for someinteger | > 0. Sincer > 0, wefind also
the important result m < 1.

Since K takes the same eigenvalues if m=0 or m > 0, the radia function R(r),
determined from (2), is unchanged by dropping the requirement of axia symmetry. So
the radial functions are independent of m.

We have shown that © (x) = (1 — x2)™2A(x) where A isnow apolynomial in x. There
isno difficulty in finding the coefficients of this polynomial. However, aquick way to get an
explicit formulafor A isavailable, since, if the equation satisfied by Legendre polynomial
R (see (4)) isdifferentiated m times, the result is

) dm+2 dm+l dm

Comparing this with the equation (12) satisfied by A(x), we see that a solution for A is
A(x) =d™R (x)/dx™. Since P (x) is a polynomial involving nonnegative powers of X,
there is no danger of A(x) blowing up anywherein -1 <x < 1.

The product (1 — x2)™2d™P (x)/dx™ is therefore a solution for the angular function
O(x). Itiscalled the associated Legendre function, denoted by B™(x).

The equation (11) for © depends upon m only via m2. Therefore, if m < 0, the
nonsingular solution must be proportional to P,‘m‘ (cos®). We adopt the convention

-—m!_.

R0 = (—1)'“(I ) R0, (13)

in which the constant of proportionality has been chosen so that
a1- X2)m/2 d|+m
211 dx!+m

appliesfor al (I, m) suchthat - <m<|I.

RM(x) = (CSE (14)
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82 Chapter 4 / SPHERICAL COORDINATES, AND SURFACE HARMONICS

BOX 4.1 (continued)

Several books have been written on propertiesof B and B™ (e.g., Robin 1957; Hobson,
1955), and Wiggins and Saito (1971) and Masters and Richards-Dinger (1998) showed
how to compute these functions efficiently. Summarizing the most important formulas, it is

known that
1 R
(L+12—2r cosh)2 ;r R(cosd) O<r<1 (15)
(I =m+DHPTx) — (@ +DxP"x) + (1 +mPT(x) =0 (16)
d
(1-— xz)& P™(x) = (I + DxPM(x) — (I = m+ 1HPM,(x). (17)
It is convenient to define fully normalized surface harmonics
m o am[2 1A= imp
Y@, ) = (-1 [ p P™(cos6)€e (18)

for integers| > 0 and integersm such that —| <m <1. Then
M0, 9) = (DY, o),

the * denoting a complex conjugate.

The Legendre functions are orthogonal, as are the azimuthal functions éM and the
normalizing factor in (18) has been chosen so that the orthogonality of the Y,™(0, ¢) takes
asimple form, namely

2 T
/0 do /0 Y. 9V (6. $) SN d6 = 815y (19)

(Note: thisisan integration over the surface of a sphere of unit radius.)

If ¥ is the angle between the two directions out from the center of coordinates to
the points specified by (6, ¢) and (¢’, ¢') in spherica polars, then cosyr = cosé cos6’ +
sinf sin®’ cos(¢ — ¢’), and

P (cosy) = PR A A D (20)

—l<mx<l

2|+1

In the theory for excitation of normal modes by a point source, we need values of Y™
and some of its derivativesat 6 = 0. A key result is
1 d+m!
2"m! (I — m)!

R™M(cosd) — asf® — 0, form=>0.

Finaly, we comment that surface harmonics provide the horizontal wavefunctions
needed to study wave propagation in spherical geometry, and in this sense play rolessimilar
to those of cos(kxX + Kyy) and Jm(kr )€™ for cartesian and cylindrical geometry.
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SPHERICAL COORDINATES, AND SURFACE HARMONICS

as & kixatkaX2) - or sinkyx; sinkoxp, are used in cartesian geometry, where the horizontal
variables are (X1, X2).
For example, consider the scalar wave equation (2.25), for pressure in afluid:

19%P _, .
——5 = V°P. 2.25again
2 2 ( again)

A detailed derivation of the basic properties of the L egendre polynomials P (cosé), the
associated Legendre functions P™(cos#), and surface harmonics le(cose)eii‘i’ , isgiven
in Box 4.1. These functions provide the separated solutions © () ® (¢), needed to obtain
solutions to (2.25) in the form

P(X,t) = Rr)®@)®(¢)T(1).

Figure 4.1 shows a number of examples of Legendre functions, plotted as large-
amplitude topography added to acircle.

A useful way to think of the results derived in Box 4.1, isthat the properties of surface
harmonics are derived directly from the equations these specia functions satisfy, in much
thewame way that we could (if we chose) investigate the properties of the spzeci al functions

d-f
sinix and cosAx knowing only that these functions satisfied the equation o2 +212f =0.
For example, jusg fgom this equation, and a normalization, we could find ﬁwe power series
SINAX = AX — T andcosax =1— 5 T and other properties.
Principal restlts of Box 4.1, in application to (2.25), are that:

2

d-T _
(i) Theequationfor T is T @?T =0, solved by T = etiet,
2

d<o .
(i) The equation for @ is Freae constant x ®, solved by ® = e*'™? where m is an
integer (since we require that ® be a single-valued function of position).

2

d
(iii) The equation for ® is — <sin9—> Sy LU K ] siné ®, which has awell-

dr sin?
behaved solution ®(9) for all & valuesintherange 0 <6 <, but only if K isa
product of consecutive integers: K =1(1 + 1). Notethat —| <m <. (If K hasany

value other than| (I + 1), the solution for ® (9) hassingularitiesat = 0andd = r.)

d2(rRr) w? 11+1 .
a2 2" 2 rR=0. (This result follows
from (2) of Box 4.1.) Note that R here depends on | but not on m. We sometimes

write this solution as R (r) to signify the dependence on| (but not on m).

(iv) The equation for R is

We can get some perspective on theseresults, if we C(;nsi der some general properties of

solutionsto V2P = 0 (the Laplace equation) or V2P + % P = 0 (the Helmholtz equation),
in both cartesians and spherical polars.
For example, the Laplace equation has solutions in cartesians given by

. . /121 |2
P(X]_, X2, X3) — ilk]_X]_eilk2XZe:|: kl+k2 X3’ (44)
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84 Chapter 4 / SPHERICAL COORDINATES, AND SURFACE HARMONICS

r=1+02 Ps(cose)

r:1—0.2§(cose 0

r=1+0.2 Plo(cose)
r=1— 0.2? (cos 6)
r=1+02 Fi4(cose)

PM=1 P()=x R(¥) = (12)(3x*—1) PO =(U2ER —3) P () = (U8)(35k —Fx +3)
R() = (UB)(63° — 708 +15¢)  P(x)=(1/16)(429% — 698x +318x —35%)

P (¥ = (1/256)(46189x° — 1093955 +90000% — 30030x + 3465 — 63)

Pl4(x) = (1/2048)(5014575x14 — 16900975}<2 +22300287%° — 14549538«
+4849845% °— 7657658 + 450455 — 429)
From these formulas we see that the Legendre polynomials get complicated quickly, astheir order

increases. But in practice, the actual polynomial expressions are not used for the computation of these
shapes. Instead, we can use a so-called recursion relation:

(1+1) I|3+1 =@ +)x P () — 1 |P—1(X)'
From Po(x) =1 and Pl(x) =X we can quickly compute Pz(x) for arange of x values using this
relation. Then we do P3(x), then F:l(x), etc.

A spreadsheet can easily give the table of values needed to produce Figures such as those above.

FIGURE 4.1

which has horizontal oscillations and vertical growth or decay (if the horizontal wavenum-
bersk; and k; arereal). The greater the spatial rate of horizontal oscillation, the greater the
rate of exponentia growth or decay.

The same Laplace equation solved in spherical polarsleadsto

P, 0, ¢) = <arI + rl%) P™(cosd)e™m? (4.5)
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SPHERICAL COORDINATES, AND SURFACE HARMONICS

d’rR) 10 +1
(this is because the radial equation becomes d(:z ) = ( r+ ) rR, solved by R=r' or
R=r—(0+D). But (4.5) is just like (4.4), in having horizontal oscillations (the angular
wavenumbers| and m arereal integers), and vertical growth (ther' solution) or decay (like
r—(l+1))'

Notethat when forming the double spatial derivativesthat make up V2FI’, th(la horizontal
derivatives give a negative result (—(k? +k3) x P for cartesians, — D p for
spherical polars), and the vertical derivatives must give the balancing positive result if
we wish to solve Laplace’s equation, i.e. to ensure that V2P = 0.

Solutions to the Helmholtz equation are different in that there can be oscillations

in al three cartesian directions if the horizontal wavenumber ,/k? + k2 is less than the

2
total wavenumber % The vertical wavenumber, given by ./ % — k2 — K3, is then real

(homogeneous waves). But if \/k? + k2 > 2 then k2 (the square of the vertical slowness)
has to be negative and there is growth or decay in the x3 direction (inhomogeneous waves),
not oscillation. In all cases, the spatial derivativesin the Helmholtz equation, applied to the
separated solution |n2cartee|ans give the negative result — (k% + k3 + k2) x P, matched by

the positive result UC)— x P because we always require k? + k3 + k3 = —2.
The Helmholtz equation solved by separation of variables in spherical polars uses
specia functions called spherical Hankel functionsfor R = R(r). These solutions, written

asR(r) = h(l) (4 or R(r) = h(z) (%), aso turn out to have oscillatory behavior in the
r direction |f t?he horizontal Wavenumber |s Iess than the total wavenumber, but now the

%, the spherical Hankel functions exhibit
exponential behavior.

Thepurposeof the abc>2ve review, isto bring out some characteristic featuresof solutions
to V2P = 0and V2P + % P = 0. In particular we can see the way in which the horizontal
and vertical derivatives contai ngd in V2 must add either to zero (Laplace) or to a negative

result that is cancelled by the w_2 term (Helmholtz). With the Helmholtz equation, there are
optionsin that the solution can either oscillate or have exponential behavior in the vertical
direction, according to the rate of oscillation in the horizontal direction. With the Laplace
equation, thereisno option: provided thereis oscillation in the horizontal direction, growth
or decay isrequired in the vertical direction, not oscillation.

1. Spherical Bessel functions, written as j; 1 1(%), are commonly used also, for solving the
Helmholtz equation in spherical polars. Unllkesphencaj Hankel functions, they have no singularity at

theorigin, r = 0. Therelation betweenthethreesolutlon5|sJ|+1(“”)— i [h<l)1(wr) + h(z)l(“”)]

which, inthecasethat +2 < 2. islikerepresenting astanding wave asasum of upward and downward
traveling waves.
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86 Chapter 4 / SPHERICAL COORDINATES, AND SURFACE HARMONICS

4.1 The utility of Legendre polynomials for representing information on a
spherical surface

It turns out that Legendre polynomials have properties of orthogonality that make them
ideally suited for representing information on the Earth’'s surface as a function of latitude.
To see this result, suppose that we have a set of polynomials P (x), for i =
0,1,2,...,00and P (x) isapolynomia of orderi.
We ask, what the properties of the polynomials P, (x) that would make the whole set
useful for purposes of representing any reasonable function f (x), defined on the interval
—1<x<1, byaseriesintheform

o0

fo)=> aRx)? (4.6)

i=0

To answer this question, we need tofill in some details. For example, weinterpret (4.6)
to mean that the longer we make the finite series $,(x), defined by

n
S0 =) aPR(x), (4.7)
i=0
the better the fit of $,(x) to f (x), in the sensethat E,, is small, where we define

1
EnE/ (f — S)2dx. 4.8)
-1

Surprisingly, there is almost enough information in the above specification of how
we plan to use the polynomials, to actually define what the polynomials must be (that
is, to provide the coefficients for every power of x in each of the polynomias P (x), for
i=0,12...,00). What then, are these polynomials?

We want the coefficients a; to be chosen to minimize E,,. Therefore,

1
a—Enz—Zf (f —S)P dx=0.
0 -1

1 1 n
/ fB dx 2/ ajPj | B dx. (4.9
-1 -1 i=0

If we go onto the (n + 1t approximation for f (x), that is, S, +1(x), we add an 1 Ph11(X)
to $,(x) and hence an41 f}l Ph+1P dx to (4.9) above. Provided we decide not to change
the earlier coefficientsa; fori =0, 1, 2, ..., n, used for $,(x), when we come to evaluate
the additional coefficient an1 needed for S, 1(x), it follows that

1
/ PiriOR(X)dx=0 for 0<i<n, (4.10)
-1
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4.1 The utility of Legendre polynomials for representing information on a spherical surface

which is a statement that the (n 4+ 1) polynomial is orthogonal to all of the previous n
polynomials.

These n + 1 conditions are enough to determine the coefficients of the (n + 1)th
polynomial, up to an overall factor. And the overall factor itself can be determined if
we use anormalization, such as P, (x) = 1 for x = 1.

To seethat thereisenough information hereto obtain all the polynomial coefficients, let
us consider afew examples. Thus, we can take Pp(X) = bg. Therequirement that Py(1) = 1
then givesbp = 1, so Py(x) = 1.

Next, take P1(x) = Co + c1x. Weknow 0= [, PoPy dx = (cox + 1x?)|1,; = 2¢o, and
1=P(1)=cg+C1. S0cop=0,c1; =1, and Pi(X) = x.

Then for Pa(x) = dg + dix + dox2, we have 0= f_ll PoP2 dx =2do + 2,0=
S, PiPydx = 2dy, and 1 = Py(1) = do + dp, giving Pa(x) = — + 3x2

We see in these three examples that we have indeed obtained the first three Legendre
polynomials. It is possible to obtain a formula for the j-th coefficient of the genera
polynomial P, (x), and in this way we find that the polynomials defined by the ability to
represent functions f (x) ontheinterval —1 < x < 1, are exactly the Legendre polynomials
defined by equation (10) of Box 4.1.

The above property of L egendre polynomials dependson the “ goodness of fit” criterion
expressed by (4.8). But there are many other choices we could make — such as

1
EnE/ (f — S)2 w(x) dx. (4.12)
-1

for some weight function, w(x).
If, for example, w(x) =

> then the ends of the interval are strongly weighted.

— X
If we represent afunction f by f(x) =>_ a P (x) and minimize E,, defined in (4.11), the
polynomials can be shown to obey the orthogonality rule

1
/ RPw(x) dx=0 if i#]. (4.12)
-1

It is possible to show that this weight function leads to the Fourier sine series based on the
orthogonality

|t

/2§nn0§nm0 d6 =0 forintegers nz#m.

T
2

The polynomials obeying the weighted orthogonality rule (4.12) turn out to be given by
sinnd = Py(sin®), sinmd = Py(sin®), andnotethatif x = sind thendd = %. [Check
this claim. It probably needs modification, since sinné is a polynomial insiné ())(nly ifnis
an odd integer.]

Another example of aweight function, would be w(x) so strong that afit at X = Xg is

al that matters. Then therule

1
/ PPwx)dx=0 if i#]j,
-1
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88 Chapter 4 / SPHERICAL COORDINATES, AND SURFACE HARMONICS
together with w(x) = §(X — Xg) leads to the Taylor series

(X — Xo)
2!

2
f(x) = f(X0) + (X — x0) f'(X0) + f7(x0) + ...

Having seen with these examples that different weight functions lead to different sets
of polynomials, with each set enabling usto represent ageneral function f (x) in adifferent
way, we can ask what is special about the Legendre functions that we found when the
weight function isaconstant. The physical interpretation here, isthat al pointsintherange
—1 < x < 1arebeing treated equally, in the goodness of fit expressed by (4.8). This also
means that each element of area on the surface of a sphere is being treated equally, when
we seek to express afunction f (6) (which could a so be data on the surface of the sphere)
asasum of Legendre functions. If for example the sphere is the surface of the Earth, with
radiusrg, then the approximation

n
f(®)=>) aPi(cosh) =S,

i=0

is associated with a criterion that we minimize the squared difference between f and S,
integrated over the whole surface of the Earth. Thus, we minimize

En=/ (f — S»?27r2sing d9=27rré/ (f — S)?sine do,
0 0
leading to the orthogonality result,
b4 1
f P (cos6) Pj(cos#) sing do =/ PP (x)dx=0, if i#].
0 1

More generally, for surface harmonics le(cose)ei m¢ and F’l’,“/(cosé?)ei m$ we find
2 g , . ,
f do f P™(cosd) B (cos®)e M™% sing do = 0
0 0

unlessl =1"and m = m'. The surface harmonic Y,"(6, ¢) is proportional to F’lm(cose)ei mé,
and normalized so that

2 bid
/(; d¢/0 Y@, $)I*Y," (0, ¢) sin6 db = 81/Smny»

as noted in equation (19) of Box 4.1.
Just as we can write a 3D vector A as asum of its components via

i=1

(where the basis vectors X; have unit length and are orthogonal, X; - X; = §;j), and the
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coefficients are given by
A=A-X%,

we can similarly write any function f = f (6, ¢) defined on the surface of a sphere as the
sum of its components via

00 |

fO.0)=Y" > f™"0.¢) (4.13)

1=0 m=—I

where the coefficients here are given by

2 T
f|m=/0 d¢>/0 £ 6, 9L, $)]* sinb db.

Inthe Earth Sciences, itisroutineto expressscal arssuch gravity anomalies, topography,
temperature, and many other variables, as a sum of surface harmonics in the form (4.13).
Each harmonic component may then be interpreted according to the underlying physical
equation (a diffusion equation, Laplace's equation, a Helmholtz equation) with which that
scalar variable may be associated. It is aso possible to extend the concept of surface
harmonics, to study vector functions defined on a spherical surface. Global circulation
models, and model s of seismic motion, routinely make use of vector fieldsthat are analysed
using vector surface harmonics.

[I expect eventually to add material in this chapter, on the way to represent a delta
function on a sphere (as a sum over surface harmonics). Also, to discuss the generating
function for Legendre functions, and its relation to the way a point source is represented by
asum of solid harmonics.]

Suggestions for Further Reading

Menke, William, and Dallas Abbott. Geophysical Theory, New York: Columbia University
Press, 1990 (pp 143-154).

Aki, Keiiti, and Paul G. Richards. Quantitative Seismol ogy, Sausalito, California: University
Science Books, 2002 (chapter 8).
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