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CHAPTER 5
Complex Functions of a Complex Variable

This chapter briefly reviews the special properties of complex-valued functions of (x, y)

where x and y are real, and the dependence on this pair of independent variables is only via
the combination z = x + iy.

If x and y are real variables, and z = x + iy, we say that the complex function f (z) is
an analytic function of z if

(i) the derivative
d f

dz
exists, and

(ii) this derivative is independent of the orientation of δz in the limit as δz → 0.

If the real part of f is u, and the imaginary part of f is v, then

∂u

∂x
= ∂v

∂y
and

∂u

∂y
= −∂v

∂x
wherever f (z) is analytic. (5.1)

These are known as the Cauchy-Riemann relations, and they are easy to prove by taking
the limit

δ f

δz
→ d f

dz

in two different ways. First, let δz = δx , and second, let δz = iδy. In the first case, we have

d f

dz
= lim

δz→0

δ f

δz
= lim

δx→0

u(x + δx, y) + iv(x + δx, y) − u(x, y) − iv(x, y)

δx

= ∂u

∂x
+ i

∂v

∂x
.

In the second case, we have

d f

dz
= lim

δy→0

u(x, y + i δy) + iv(x, y + i δy) − u(x, y) − iv(v, y)

i δy

= ∂u

i ∂y
+ i ∂v

i ∂y
= −i

∂u

∂y
+ ∂v

∂y
.
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92 Chapter 5 / COMPLEX FUNCTIONS OF A COMPLEX VARIABLE

BOX 5.1
A practical application of complex function theory

When integral transforms are used to solve differential equations, it is common to find that
an algebraic expression can be obtained for the transformed solution. The untransformed
solution can then obtained as an inverse transform, for example as

f (x) = 1

2π

∫ ∞

−∞
F(k) eikxdk

where F(k) is a known algebraic expression.
In practice, this integral can often be evaluated by treating the independent variable of

integration (k, in our example) as a complex-valued quantity, and the integrand as a complex
function of a complex variable. By changing the integration so that it follows a complex
path (in the complex k–plane, in our example, instead of going along the real k–axis), the
result of the integration can be written in many different forms, some of which may easily
allow the integral to be evaluated. An example is given at the end of this chapter, where

F(k) = 1

k2 + a2
.

Since the formulas for the derivative of f must give the same result in these two cases,

∂u

∂x
+ i

∂v

∂x
= −i

∂u

∂y
+ ∂v

∂y

and by taking the real and imaginary parts of this equation we see that the Cauchy-Riemann
relations (5.1) must be true.

Note that u and v are both real functions of the real variables x and y. What makes
the subject of “complex functions of a complex variable” so special, and quite different
from simply studying f (x, y) = u(x, y) + iv(x, y), is that we are treating x and y in the
combination z = x + iy. In this case we can apply the Cauchy-Riemann relations for any
values of z for which f is analytic.

As an example of the special properties of f at values of z where f is analytic, note
that

∇2u = ∂2u

∂x2
+ ∂2u

∂y2
= ∂

∂x

(
∂v

∂y

)
+ ∂

∂y

(
−∂v

∂x

)
= 0.

Similarly ∇2v = 0, and hence ∇2 f = 0. Thus, analytic functions are special functions of
(x, y) in that they satisfy the two-dimensional Laplace equation.

Analytic functions have numerous other properties which lead to many practical
applications. The most important properties stem from Cauchy’s Theorem, proved in the
next section. The applications usually entail the use of functions that are not analytic
everywhere — the most important examples arising from singularities of f (z), discussed
in a later section.
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5.1 Cauchy’s Theorem 93

5.1 Cauchy’s Theorem

If f is analytic as a function of z, for values of z both on and inside a closed curve C
in the complex z plane, then

∮
C

f dz = 0. (5.2)

(We use the notation
∮

C , rather than
∫

C , when we wish to indicate that C is a closed curve
and the path of integration is taken around the whole circuit in the positive direction, that
is, anticlockwise.1)

This major result, which was obtained by Auguste Cauchy in the 1820s, can be proved
by an application of Gauss’s divergence theorem

∫
V

∇ · A dV =
∫

S
A · dS. (5.3)

Note that (5.3) applies to real vectors and surfaces and volumes in three dimensions. But
if A depends only on the real variables (x, y) then we can consider a prism whose cross-
section is the curve C of (5.2), allowing us to obtain a two-dimensional version of Gauss’s
theorem in the form

∫
S

(
∂ Ax

∂x
+ ∂ Ay

∂y

)
d S =

∮
C
(Ax, Ay).(dy, −dx). (5.4)

Here, we have changed notation from (5.3) and are now using S as the interior of the curve
C . As shown in Figure 5.1, the vector (dy, −dx) is in the outward direction from C , required
in (5.4) as the interpretation of the right-hand side of (5.3).

We can use (5.4) to prove (5.2) by first writing (5.2) as

∮
C

f dz =
∮

C
(u + iv)(dx + idy) =

∮
C

[(u dx − v dy) + i(v dx + u dy)]. (5.5)

If we then define the two-dimensional real vector A as (v, u), (5.4) gives

∫
S

(
∂v

∂x
+ ∂u

∂y

)
d S =

∮
C
(v, u)(dy, −dx) = −

∮
C
(u dx − v dy). (5.6)

But since f (z) is analytic everywhere in S (the interior of C), one of the Cauchy-Riemann
relations (5.1) tells us that the left-hand side of (5.6) vanishes, and hence that the real part
of the right-hand side of (5.5) is zero. Similarly, we can define A = (u, −v) and apply (5.4)
and the other Cauchy-Riemann relation to conclude also that the imaginary part of (5.5) is
zero — hence proving Cauchy’s Theorem.

1. For complicated paths such as shown in Figure 5.2, where it is not always obvious which is the
anticlockwise direction, the positive direction is defined as the direction such that the interior of the
circuit lies on the left of the path.
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94 Chapter 5 / COMPLEX FUNCTIONS OF A COMPLEX VARIABLE

z

z + dz

dS  =  (dy, –dx)

x = Re z

y 
=

 I
m

 z

C (closed path, 
       taken anticlockwise)

S

FIGURE 5.1
A closed curve C is shown in the complex z-plane. For points z and z + dz lying on C , dz is a
line element and the outward normal to C , having magnitude |dz| and direction perpendicular to
(dx, dy), is then (dy, −dx).

5.1.1 SOME OBVIOUS CONSEQUENCES OF CAUCHY’S THEOREM

Here are a couple of corollaries:

(i) If we wish to evaluate the integral of f with respect to z along a path L1 from z A

to zB, then we can choose an alternate path from z A to zB, say L2, and get the same
result — provided f is analytic on L1 and L2 and f is also analytic throughout the
region between these two paths. That is,

∫ zB via L1

z A

f dz =
∫ zB via L2

z A

f dz. (5.7)

This result follows from (5.2), defining C to be the closed path from z A to zB via L1,
and then back to z A via L2 in reverse. It follows that we are free to choose any path,
to evaluate the integral from z1 to z2. In particular, we can choose a path that helps
to carry out the evaluation.

(ii) If we wish to evaluate the integral of f with respect to z on a closed path C , then
we can choose an alternate closed path C ′ (see Figure 5.2) that is entirely inside C ,
provided f is analytic on C ′ and throughout the area enclosed between C and C ′.
This result is useful if f is known not to be analytic within a subregion of the interior
of C that can be localized to within C ′. The result is proved by considering the closed
path defined as follows: starting at the point A (see Figure 5.2), go anticlockwise
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y 
=

 I
m

 z

x = Re z

C'

C

A

B

L

FIGURE 5.2
A closed curve C is shown in the complex z-plane, and inside C is another closed path, C ′.

around C , then from A to B on C ′ by a line L , than around C ′ clockwise, and finally
from B back to A by the line in reverse. This whole path constitutes a closed circuit
for which the interior is always on the left, and f is analytic in this interior. Note that
we are not requiring f to be analytic everywhere inside C , only between C and C ′

and on the path itself. So, from (5.2),

∮
C+L−C ′−L

f dz = 0.

The signs here, for L and C ′, indicate the direction taken. The two L contributions
cancel, so

∮
C−C ′ = 0, which we can rewrite as

∮
C

f dz =
∮

C ′
f dz. (5.8)

It is characteristic of the theory of complex functions of a complex variable, that it has
results like (5.7) and (5.8) which are useful and simple to state, but which often take a long
time to explain the first time you see them.

5.2 Singularities of f (z), and the “Calculus of Residues”

If f (z) behaves like
λ

(z − z0)N
(where λ is a non-zero constant), for values of z near z0,

then the derivative of f does not exist at z0, and f cannot be analytic there. f is said to
have an N th order singularity (sometimes called an N th order pole) at z = z0.
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96 Chapter 5 / COMPLEX FUNCTIONS OF A COMPLEX VARIABLE

If z0 is outside C it is still true that
∮

C f (z) dz = 0 (provided f is analytic on C and
inside C). But what can we say about

∮
C f dz, if z0 is inside the path of integration?

First, we note that f (z) can be expanded in a series of powers of (z − z0), called a
Laurent series, as follows:

f (z) =
∞∑

n=−N

an(z − z0)
n (5.9)

where a−N = λ. This is similar in some ways to a Taylor series, which would start with
n = 0. But instead of the usual Taylor series, we must start the series at n = −N to include
the singularity that will dominate the behavior of f (z) for values of z near z0. (As we shall
see, the Laurent series is useful because we can integrate it term by term. All the terms
except one will vanish after the integration.)

Second, we can evaluate
∮

C f (z) dz, where z0 lies inside C , by replacing C by a small
circle of radius R and centered on z0 itself. (This is because we can call this circle C ′ and
apply (5.8).) Thus,

∮
C

f (z) dz =
∮

C ′= circle of radius R, centered on z0

f (z) dz (5.10)

Third, we note that

∮
C ′

an(z − z0)
n dx = an

∫ 2π

0
Rneinθ i Reiθ dθ = ian Rn+1

∫ 2π

0
ei(n+1)θ dθ (5.11)

(taking z = Reiθ , so that dz = i Reiθ dθ ). But

∫ 2π

0
ei(n+1)θ dθ = 1

i(n + 1)
ei(n+1)θ

∣∣∣∣
θ=2π

θ=0
= 0, unless n + 1 = 0 (i.e. n = −1).(5.12)

This last result follows because in general n + 1 is an integer different from zero, and
ei(n+1)2π = e0 = 1 (eiθ is periodic with period 2π ). In the special case n = −1, when we
cannot divide by n + 1, we have from (5.11) that

∮
C ′

a−1

z − z0
dz = ia−1

∫ 2π

0
dθ = 2π ia−1. (5.13)

Putting these results together, (5.9) through (5.13), we find that

∮
C

f (z) dz = 2π ia−1. (5.14)

The value a−1 is called the residue of f . This is a natural word to use, in the sense that
once f has been integrated, the only term in the Laurent series that is left, is the one with
coefficient a−1. (A residue is something that is left after everything else has been removed.)
Note that (5.14) is valid, even in situations where f (z) has a singularity at z = z0 that is

even stronger than
1

z − z0
. In other words, (5.14) applies even when −N < −1 in (5.9).
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5.2 Singularities of f (z), and the “Calculus of Residues” 97

The only term that matters, is the so-called simple pole. The only residue, is that coming

from the coefficient of
1

z − z0
.

We can generalize (5.14) to the case that there is more than one place inside C where
f is singular, by adding the contribution from each residue to obtain the total:

∮
C

f (z) dz = 2π i × the sum of residues inside C . (5.15)

Next, suppose that f (z) is analytic both on and inside C , so that
∮

C f (z) dz = 0. What

then is the value of
∮

C

f (z)

z − z0
dz? We can answer the question by applying to the function

g = f

z − z0
the results obtained above for a function with a pole.

The integrand g in this case is not analytic because it has a first order pole at z = z0

(alternatively called a simple pole).
If z0 is outside C , then the integral is zero because the singularity lies outside and the

conditions for Cauchy’s theorem are satisfied. But what is
∮

C

f (z)

z − z0
dz if z0 lies inside C?

In this case we can write the Laurent series for the integrand as

g(z) = f (z)

z − z0
= f (z0)

z − z0
+

∞∑
n=0

an(z − z0)
n. (5.16)

Replacing f (z) in (5.14) by g(z) and using (5.16) to identify the residue, we see that

∮
C

f (z)

z − z0
dz = 2π i f (z0). (5.17)

This result is useful, because it tells us that we can evaluate f at any point inside C ,
once we know the values of f (z) on the curve C itself. [All we have to do is turn (5.17)

around and write it as f (z0) = 1

2π i

∮
C

f (z)

z − z0
dz, and then carry out the integration to

obtain f (z0) for any point z0 inside C .] Thus, the information about f on C itself is enough
to determine values of f everywhere inside C! The result is remarkable, because it allows
us to extrapolate from information about f provided on a line, to obtain information about
f throughout an area. (Remember, in this application, f has to be analytic inside and on
C , and z0 has to be inside C . If z0 is outside C , the integration in (5.17) gives zero.)

The calculus of residues (the name given to applications of (5.10), (5.14) – (5.17)) can
be used to evaluate integrals. As a simple example, we can examine

I (a) =
∫ ∞

−∞
dk

k2 + a2
. (5.18)

The method of evaluation of integrals such as (5.18) is via a series of standard tricks, each
of which takes some time to explain the first time you see it. But with a little practice,
these steps can be applied very quickly so that the evaluation of the integration can often
be written straight down, or obtained with minimal sidework.

Note in (5.18) that a is real and k ranges over all real values from −∞ to +∞, so that
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98 Chapter 5 / COMPLEX FUNCTIONS OF A COMPLEX VARIABLE

z = i a

consider a semicircle
 of radius R (and then 
let R tend to infinity)

C

z = Rz = — R

z = — i a

FIGURE 5.3
This shows a particular path of integration, C , in the complex z plane; namely, a semicircle with
diameter along the real axis (x values from x = −R to x = +R), and an arc in the upper half plane

(where z has a positive imaginary part). One of the poles of
1

z2 + a2
lies inside C , the other lies

outside. Note that C is taken in the positive direction (anticlockwise).

I (a) must be real. Now we shall evaluate I (a) by a method that extends k values to the
complex plane.

The first step is to recognize that we can write (5.18) as

I (a) = lim
R→∞

∮
C

dz

z2 + a2
(5.19)

where C is the semicircular path shown in Figure 5.3. Note that C is composed of two
parts: the original path in (5.18), running over all real values from −∞ to +∞; and a
semicircle in the upper half plane. This second part turns out to contribute nothing to the
circuit integral, because the integrand is so small on the large arc. The whole point of adding
this semicircular path is that it completes the circuit. 2 But now, with (5.19), we can take
the second step and use (5.15) to write

2. More formally in proving (5.19), we see that in the limit as R → ∞, the diameter of the
semicircle becomes the real axis from −∞ to +∞, which is the extent of the integration in (5.18).
Additionally we have a contribution from the large semicircular arc in the upper half of the complex
z plane, described by z = Reiθ , for θ running from 0 to π ; and then we have to take the limit of
the contribution to the integral that comes from the semicircle, as R → ∞. But this addition to the
original path contributes nothing to the integration, because the integrand is so small on the large arc.
In effect we have added zero to (5.18) to obtain (5.19). But now we have a circuit integral that can be
evaluated by use of residues.
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5.2 Singularities of f (z), and the “Calculus of Residues” 99

I (a) = 2π i × the sum of residues of
1

z2 + a2
inside C

where now in the limit as R → ∞ we must include any residue in the whole region above
the real z-axis.

The third step is to evaluate the residues inside the circuit. In the present case this is
simple, because there is only one such residue. To see this, note that the integrand here can

be written as
1

(z + ia)(z − ia)
so there is a pole inside the closed curve, at z = +ia. The

other pole, at z = −ia, lies below the real z-axis and is therefore outside C .

The residue of
1

z2 + a2
at z = +ia is, by definition, the coefficient of

1

z − ia
in the

Laurent expansion for
1

z2 + a2
in the vicinity of z = +ia. To obtain this residue, we note

that in the vicinity of z = ia,

1

z2 + a2
∼ 1

z − ia

(
1

z + ia

∣∣∣∣
z=ia

)
= 1

z − ia
× 1

2ia
.

The residue is therefore
1

2ia
. Hence by evaluating the residue we obtain our answer:

I (a) =
∫ ∞

−∞
dk

k2 + a2
= 2π i × 1

2ia
= π

a
. (5.20)

As an alternative but related approach to evaluating (5.19) we can apply (5.16) and (5.17)

with g(z) = 1

z2 + a2
, z0 = ia, and f (z) = 1

z + ia
. Then f (z0) = 1/(2ia), and again we

obtain (5.20).
With a little practice, results such as (5.20) can be written down almost immediately

without having to do any intermediate algebraic manipulations. Note that the first step in the
evaluation of (5.18) requires some creativity, in order to find a path with the two properties
that (a) it “completes the circuit” (allowing us to evaluate the integral by use of residues),
and (b) that it adds nothing to the original integration. In the present case, a semicircle in
the lower half plane would work just as well.

The same general approach allows us to see how to evaluate the inverse transform of

F(k) = 1

k2 + a2
. Inverting from k to x , F transforms back to f (x) where x is real and

f (x) = 1

2π

∫ ∞

−∞
eikx dk

k2 + a2
= 1

2π
2π i × e−ax

2ia
= e−ax

2a
(assuming x > 0).

In the evaluation of this integral by the calculus of residues, use of a semicircle in the
upper half plane is appropriate because eikx is exponentially small when k has a positive
imaginary part. (The semicircle in the lower half plane would be inappropriate because then
eikx would be exponentially large.) A similar example of the calculus of residues is used
elsewhere in these class notes to evaluate one of the inverse integral transforms needed to
obtain the temperature associated with dyke injection (see Chapter 6).
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