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A general set of 2-D equations for the conservation of mass and momentum of a two-phase system of melt in a 
deformable matrix is used to derive analytic solutions for the corner flow of a constant porosity melt-saturated porous 
medium. This solution is used to model the melt extraction processes at mid-ocean ridges and island arcs. The models 
indicate that flow of melt is controlled by pressure gradients induced by the Laplacian of the matrix velocity field and 
by the dimensionless percolation velocity which measures the relative contributions of buoyancy-driven flow to 
advection by the matrix. The models can account for many features of ridge and arc volcanism. Matrix comer flow at 
ridges causes melt to be drawn to the ridge axis enabling the extraction of small melt fractions from a wide melting 
zone while showing a narrow zone of volcanism at the surface. At subduction zones melts do not percolate vertically 
but are drawn to the junction of the upper plate and subducting slab by corner flow in the mantle wedge. For 
subduction zones, if the dimensionless percolation velocity is below a critical value, slab-derived fluids will be carried 
down by the matrix and cannot interact with the mantle wedge. The geochemistry of island arcs will be controlled by 
the geometry of melt streamlines. This model is consistent with geophysical and geochemical data  from the Aleutian 
arc. 

1. Introduction 

It is generally accepted that partial melting 
with subsequent separation from the solid residue 
is the primary process governing the production of 
melt at oceanic spreading centers and subduction 
zones, yet little is actually understood of the 
physical processes involved. As estimates of global 
magmatism indicate that oceanic magmatism 
accounts for approximately 75% of global output 
[1] it is important that work be done to quantify 
these processes. 

Until recently, however, this has been difficult 
for lack of a comprehensive system of equations 
governing conservation of mass, momentum and 
energy for a two-phase system that takes into 
account the deformation of the solid, crystalline 
matrix. This has been remedied by several workers 
[2-4] who have proposed several similar sets of 
equations. Here we will use McKenzie's formula- 
tion and notation. 

As these equations are rather complicated, it is 
necessary to investigate their properties systemati- 
cally by looking at simple problems. The simplest 
subset of problems are one dimensional and several 
workers have investigated 1-D compaction of a 
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melt-saturated medium [3,5], melting and compac- 
tion for simple 1-D upwelling models with ad hoc 
melting functions [6,7] and the existence and sta- 
bility of 1-D porosity waves and solitons [4,5,8]. 

The purpose of this paper is to carry this work 
into two dimensions by using a general set of 2-D 
equations for the conservation of mass and 
momentum to derive analytic solutions to the 
simplest case of corner flow of a constant porosity 
meh-saturated porous medium. These models are 
then used to illustrate the melt extraction processes 
which may occur at spreading centers and subduc- 
tion zones. 

2. Governing equations 

The general governing equations for the con- 
servation of mass and momentum of a low viscos- 
ity "melt"  or "f luid" phase in a deformable "ma-  
trix" can be written [3]: 

~ (pfe~) + V'- (pfCv)  = r (1) 

~ [p~(1 - ~ ) ]  + V" [p.~(1 - O)l /]  = - F  (2) 
at 

-k~, 
v-  v= (3) 
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v ' ~ =  n v - ' v +  (~" + n /3 )v ' (v ' ,  v )  

+ (1 - 4,) a0g/~ 
k ,  - a 2 4 , " / c  

w h e r e  Of is t he  d e n s i t y  o f  t h e  me l t ,  4, is the  

v o l u m e  f r a c t i o n  o c c u p i e d  b y  the  m e l t  o r  p o r o s i t y ,  (4) 
v is t he  m e l t  ve loc i ty ,  I" is the  " m e l t i n g  f u n c t i o n "  

(5 )  w h i c h  g ives  the  r a t e  o f  m a s s  t r a n s f e r  f r o m  m a t r i x  

TABLE 1 

Notation 

Variable Meaning Value used Dimension 

a grain size 1 0  3 m 
c constant in permeability 1000 none 
d thickness of oceanic lithosphere km 

2 g acceleration due to gravity 9.81 m s 
h thickness of oceanic crust km 
k ~ permeability m 2 
k o = a 2q~3 o / c  permeability at porosity q'0 m2 
I thickness of melting zone 30-60 km 
L = [ r lUo /Apg]  1/2 length scale m 
L R length scale for ridge model m 
L.t length scale for trench model m 
p degree of partial melting 0.1-0.3 none 

piezometric pressure Pa 
~R dimensionless piezometric pressure, ridge model none 
~ ' r  dimensionless piezometric pressure, trench model none 
r polar coordinate (distance from corner) m 
r" = r / L  dimensionless polar coordinate none 
t time s 
U 0 characteristic velocity: half spreading rate, ridge model 

subduction rate, trench model 10 ~°-10 9 m s 
I V matrix velocity m s 

- 1 v melt velocity m s 
V ' ,  v" = V, v / U  o dimensionless velocities none 
Av specific volume change on melting m 3 kg 1 

1 w 0 = k0(1 - (%)Apg/q~0p percolation velocity m s 
x horizontal cartesian coordinate m 
z vertical cartesian coordinate m 
x ' ,  z" = x ,  z / L  dimensionless cartesian coordinates none 

a wedge angle (ridge model) (10-40 o ) none 
fl angle of subduction (trench m(xlel) (30-80 ° ) none 
F = D v M / D t  (McKenzie [31) melting function kg m -3 s 1 
~" matrix bulk viscosity 10 ~s- 102~ Pa s 

matrix shear viscosity 10 Ix- 10 21 Pa s 
0 polar coordinate none 
K thermal diffusivity of lithosphere 10 ..6 m 2 s -  1 

melt shear viscosity 1 Pa s 
0¢ mean density of oceanic crust 2800 kg m - 3 
or density of melt 2800 kg m 3 
P~ density of matrix 3300 kg m - 3 
A p  = P~ -- Of 5 0 0  k g  m - 3  

porosity none 
~o characteristic porosity (constant) 0.006.0.04 none 

stream function m 2 s l 

~ dimensionless melt stream function ridge model none 
~ dimensionless melt stream function trench model none 
~ dimensionless matrix stream function ridge model none 
~ r  dimensionless matrix stream function trench model none 



to melt in a frame fixed to the matrix ( F =  
DvM/Dt in McKenzie [3]). p~ is the density of 
the solid matrix, V is the matrix velocity, k ,  is the 
permeability, ~ is the "piezometric pressure" or 
the pressure in excess of "hydrostatic pressure" 
( . ~ = P - p f g z ) ,  Ap=p~-pf and /~ is the unit 
vector in the z direction with z increasing down- 
wards. Equation (5) gives the permeability as a 
non-linear function of the grain size a, porosity 
and a dimensionless coefficient, c. Estimates and 
explanations of parameters are given in Table 1. 

The first two equations govern the conservation 
of mass for the melt and matrix respectively. 
Equation (3) is Darcy's Law which states that the 
separation velocity of melt from matrix depends 
on the permeability and lies along gradients of the 
piezometric pressure. Equation (4) shows that the 
piezometric pressure has three contributing fac- 
tors. The first term on the right-hand side is the 
pressure gradient due to volume conserving shear 
deformation of the matrix. It should be noted that 
only deformation with non-zero ~72V will cause 
changes in the pressure. Uniform simple shear or 
pure shear will have no effect on the melt flow as 
they have constant first derivatives. The second 
term in equation (4) is the gradient due to volume 
changes of the matrix on expansion and compac- 
tion and the third term is the gradient due to the 
differential buoyancy between melt and matrix. 

It is important to note that in one dimension 
there is no distinction between shear deformation 
and compaction. In two and three dimensions, 
however, the difference is quite significant for 
even in the simplest case described below, where 
compaction is neglected, the shear deformation 
controls the geometry of melt extraction. 

3. Governing equations in 2-D, constant density 

If pf and p~ are constant, then in two dimen- 
sions equations (1) to (4) represent 6 equations in 
7 unknowns. If the melting function, F, is known 
then equations (1) to (4) can be solved for if, .~P 
and 2 components each of v and V. In two 
dimensions, however, the problem can be reduced 
to solving only three equations for the porosity 
and matrix velocity subject to appropriate 
boundary conditions. Once ~ and V are known, 
the piezometric pressure, permeability, and there- 
fore the melt velocity are completely determined 
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by equations (3) to (5). These general 2-D equa- 
tions are given in Appendix .A and are rather 
complicated. We have not made much progress in 
obtaining analytical solutions and further work 
will require careful numerical investigation. How- 
ever, if porosity is constant and melting neglected, 
the problem becomes surprisingly simple and ana- 
lytical solutions can be found that demonstrate 
much of the significant physics of melt extraction. 
The analytical solutions can also account for many 
of the features of volcanism at mid-ocean ridges 
and subduction zones. 

4. Simple corner flow models: constant porosity, no 
melting 

Corner flow of a viscous incompressible fluid 
has often been used to model the flow of the 
mantle near spreading centers and subduction 
zones [9-11]. As these regions of the mantle are 
probably partially molten a better approximation 
is to examine the two phase corner flow of a melt 
saturated, deformable porous medium. The solid 
matrix behaves like the viscous fluid in the previ- 
ous models but the melt in the pores obeys Darcy's 
law and flows in response to gradients in the 
piezometric pressure. In the simplest model the 
porosity is constant and melting is ignored. This 
necessarily rules out compaction. Mathematically, 

= ~0, F = 0 implies that: 

V" V = W . v = O  (6) 

from equations (1) and (2), and therefore V and v 
can be written in potential form in terms of scalar 
stream functions: 

V= WX (~J3 
= v x (7) 

where f is the unit vector perpendicular to the x, 
z plane. As is shown in Appendix A, the problem 
then reduces to simply solving the biharmonic 
equation: 

V 4 ¢  = 0 (8) 

for the matrix stream function subject to ap- 
propriate boundary conditions. 

Batchelor [12] gives a similarity solution to the 
biharmonic equation with corner flow boundary 
conditions. He shows that this problem can be 



140 

solved by inspection in polar  coordinates  with: 

V = ! ~+__i" ~_ 0¢ G (9) 
r ~0 ~r 

+~ = rUof( O ) (10a) 

and: 

f ( 0 ) = C  1 s i n 0 + C 2 0 s i n 0 + C  3 c o s 0  

+ C40 cos 0 (10b) 

where U 0 is a characterist ic velocity (i.e. the half- 
spreading rate for the ridge model  and the subduc- 
tion rate for the trench model),  r is the distance 
measured f rom the corner,  0 is the angle measured 
f rom an arbi trary zero axis and C~_ 4 are constants  
adjusted to match  the two componen t s  of  the 
velocity on each of two straight boundaries.  Given 
the matrix s t ream function, the piezometr ic  pres- 
sure and the melt  s t ream function are complete ly  
determined and can be written: 

~ =  - 'qUo [ d3f + d r )  
r ~ dO' d-O + z(r, O)(1 - qS0)Apg 

(11) 

- k  0 [r /U0( dZf 
q~0P" t ~ d - ~  " + f )  

# 

+ x(r ,  0)(1 - dpo)Aog I + ~k" (12) 

where in this case, the permeabi l i ty  is given by the 
Blake-Kozeny-Carman  equat ion [3,13]: 

ko = a 2 ~  (13) 
¢ 

and x and z are s tandard  cartesian coordinates.  
Dimensional  analysis shows that  the piezomet-  

ric pressure is governed by a single length scale: 

L = (1 - q~0)Apg (14) 

which is the length scale governing extract ion of 
melt  by shear in the matrix. This expression sug- 
gests a useful non-dimensional izat ion which re- 
veals the essential physics. Let: 

(x, z, r )=  (x ' ,  z',  r ' )L  

+')= +')'UoL (lS) 
. ~ =  ~ ' ( 1  - Oo)ApgL 
Substi tut ing and dropping  pr imes yields: 

~P = r f (O)  (16) 

~ =  - -  + + z ( r ,  O) (17) 
r d03 

where: 

k°(1 - * ° ) A P g  (19) 
w 0 = q~0t ~ 

is the "perco la t ion  velocity", that is, the sep- 
arat ion velocity between the melt and the matrix 
given by Darcy ' s  law in the absence of matr ix  
deformat ion.  Note  that  w 0 depends on the square 
of  the porosity.  Equat ion (18) shows that  the melt 
will follow the matrix s t ream lines only if the 
dimensionless  percolat ion velocity, wo/Uo=O, 
and that cont rary  to most  simple petrological 
models,  it will percolate vertically only in the 
absence of matrix deformat ion.  

5. Ridge model: solution and results 

Boundary  condit ions for the ridge model  are 
shown in Fig. la .  The  wedge geomet ry  is due to 
several workers [10,11] and is used to approx imate  
the thickening l i thosphere near  a ridge crest due to 
cooling. Polar coordinates  are defined by: 

x = r sin 0 (20) 
z = r cos O 

with the 0 = 0 being the axis of  symmetry .  The  
dimensionless boundary  condit ions for this geom- 
etry are 

at 0 = ( ~ r / 2 -  a ) :  

1 0+~ _ c o s a  - - -  s i n a  
r 30 Or 

at 0 = - (~ ' / 2  - a ) :  

- cos a - sin a (21) 
r 00 Or 

where a is the wedge angle. The  dimensionless 
matr ix  s t ream function is given by equat ions (10) 
and (16) as: 

q~h = r(A sin 8 -  BO cos 0)  (22a) 

where: 
• -) 

2 s ln 'a  
A =  

~ r -  2a  - sin 2a  

2 
B = (22b) 

~ r -  2 a -  sin 2a  
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2L. : 37 km 

Fig. 1. (a) Boundary conditions for corner flow ridge model 
showing matrix streamlines and coordinate systems. (b) Defini- 
tion of wedge angle (1. La is the characteristic length scale for 
the ridge model, d is the depth to the base of the mechanical 
boundary layer (equation (Bl)). (c) Boundary conditions for 
corner flow trench model showing matrix streamlines and 
coordinate systems. 0 is defined differently from la. 

The dimensionless piezometric pressure and melt 
stream function are then: 

B,=(~+r)cose 

+‘,=+(F+r)sinB+& 
0 

The principal features of this simple model can 
be easily seen in Figs. 2 and 3 which show melt 
and matrix streamlines for reasonable combina- 
tions of spreading rate, matrix viscosity and poros- 
ity. Given U, and 9, the wedge angle (Y is ap- 
proximated using an argument from Skilbeck [lo] 
(Appendix B). 

The most noticeable aspect of this model is the 
convergence of melt streamlines towards the ridge 
axis in contrast to the diverging matrix flow. This 
focussing effect is due to the first term in the 
piezometric pressure and arises from the pressure 
gradient due to shear in the matrix. Equation (23) 
shows that this effect decays away from the corner 

2L , : 37 km 

b 

Fig. 2. Melt streamlines (solid) and matrix streamlines (dashed) 
for slow-spreading ridges, U, = 1 cm yr-’ (a = 40 o ), matrix 
shear viscosity, q =lO *’ Pa s. Stippled region is the melt 
extraction zone containing all melt streamlines connecting the 
ridge axis to depth. h is the crustal thickness produced by the 
extraction zone. All figures are true scale. (a) Low porosity, 
w,,/U, = 1.56 (+c = l.O%), h = 0.5 km. (b) High porosity suffi- 
cient to produce - 6 km of crust, wc/.Y,, = 9.12 ($~a = 2.4%) 
h = 6.5 km. 

2L, = 60 km 

a 

b 

Fig. 3. Melt and matrix streamlines for fast spreading ridges. 
Uc = 7.5 cm yr-’ (cy=13O). n =1021 Pa s. (a) Low porosity, 
showing saddlepoint in the melt stream function, wc/Uc = 0.47 
($c = 1.5%) h = 0.5 km. (b) High porosity, sufficient to pro- 
duce - 6 km of crust, we/U, = 2.77 (+.e = 3.6%), h = 6.1 km. 
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as l / r  with a characteristic length scale of L R = 
L(2B) '/2. Because of this decay not all melt at 
depth is extracted at the ridge axis. In all cases 
there is a region of melt extraction, shown in 
stipple, in which the melt streamlines from depth 
pass through the axis. Outside this region, melt is 
incorporated into the lithospheric wedge and may 
solidify or generate off-axis volcanism. 

The absolute value of the bounding streamlines 
depends only on the dimensionless percolation 
velocity, w0 /L  %, and the wedge angle ~. If wo/U o 
is small (e.g. porosity is small), then equation (24) 
shows that the effect of the singularity will be 
diminished, advection of melt by the matrix will 
be significant and the melt streamlines will ap- 
proximately follow those of the matrix (if wo/U o 
= 0, they will be identical). In this case there will 
be a point where the advection of melt by the 
matrix is balanced by the pressure gradient to- 
wards the singularity and the melt velocity will be 
zero in a frame fixed to the ridge axis. Mathemati- 
cally this corresponds to a saddlepoint in the 
stream function and the bounding streamlines will 
be the ones that pass through this point. This 
saddlepoint is apparent in Fig. 3a, and is obtained 
numerically (Appendix B). As w 0 / U  o --* 0 the sad- 
dlepoint moves towards the origin and as wo/U o 
--* ~ the position of the saddlepoint tends to 
r =  L R, 0 = _+~r/2. If the computed saddlepoint 
lies outside the boundaries of the wedge, then the 
bounding streamline will be the one that is tan- 
gent to the boundary.. This situation is illustrated 
in Figs. 2a, b and 3b. 

The dimensional mass flux of melt per unit 
length of ridge that can be extracted from this 
region is: 

d M  R 
- 2/0fl~}0~..J,,L 14  ̀f bound I (25) dt 

i f  where ~Rbound is the dimensionless value of the 
bounding streamline. A more useful measurement, 
however, is the crustal thickness produced by this 
melt flux which is simply the area flux divided by 
.the spreading rate or: 

h Or~oL I ~ = 4 'R h , ,~d  I (26) 
P~ 

where p~ is the average density of oceanic crust. 
The crustal thickness is perhaps the most im- 

portant result produced by this model and can be 

used to put constraints on the values of the vari- 
ous parameters. Dimensional analysis shows that 
the crustal thickness behaves as: 

Wo a2gp3 [ ~Apg ] '/2 
h~q '~Luo • L--~-o J (27) 

and therefore depends primarily on the mean 
porosity and the shear viscosity of the mantle. The 
simple model also predicts that, all else being 
equal, faster spreading ridges should produce 
thinner crust than slow ridges. The discussion will 
deal with the probable ranges of ¢ and 7, their 
implications for the mechanics of mid-ocean 
ridges, and a possible explanation for the apparent 
independence of oceanic crustal thickness from 
spreading rate. 

6. Subduction zone model: .solution and results 

Boundary conditions for the subduction model 
are shown in Fig. lc. In this case it is mathemati-  
cally convenient to define polar coordinates in a 
slightly different way than the ridge model by: 

x = - r cos O 
z = r  s in0  (28) 

The dimensionless boundary conditions are 

at 0 = 0 :  

1 ~ ,  
0 

r 0e 

a t  8=/3: 
1 04`~- 

- 1  

= 0  
Or 

(29} 

0 4`~[ 
= 0  

r 00 Or 

where /3 is the angle of subduction. The dimen- 
sionless matrix stream function is given by equa- 
tions (10) and (16) as: 

4 ` ~ , = r [ C ( s i n O - S c o s S ) + D S s i n S ]  (30a) 

where: 

C /3 sin /3 

/32 _ sin2fl 
(30b) 

D = /3 cos/3 - sin l} ( D < 0) 
/32 _ sin2/3 

The dimensionless piezometric pressure and melt 
stream function are then: 

• ~ i  = - ~ 2 ( C c o s O - D s i n O ) + r s i n O  (31) 
r 
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Fig. 4. Melt (solid) and matrix (dashed) streamlines for shallow 
angle of subduction, fl = 30 °. Subduction rate, U 0 = 7.5 cm 
yr -  1 rl = 10 21 Pa s. Stippled region is the melt extraction zone 
containing all streamlines from depth that connect to the 
wedge corner. The melt flux is calculated through a circular arc 
at rm, n = 21/2 L/4.  Also shown is the length of slab sampled at 
the primary arc. The mantle wedge is true scale but the slab 
thickness is schematic for illustration only. (a) High porosity, 
~o = 3.0%, wedge comer is entirely connected to slab. w o / U  o 
=1.91, flux = 2.4×10 3 km 2 y r - l .  (b )Medium porosity, ~0 
= 1.5%. Lower permeability causes streamlines to "bulge" as 
melt flow is more affected by downwards matrix flow. The 
streamlines, however, begin and end in the same positions as 
(a). w o / U  o = 0.47, flux = 2.9×10 -4 km 2 yr -1. (c) Low poros- 
ity, ~o = 0.6%. w o / U  o = 0.07 is less than the critical value and 
a saddlepoint exists in the melt stream function causing the 
slab to partially disconnect from the comer. The length of slab 
sampled at the arc is less than in (a) and (b). Flux = 1.8 × 10-5 
km 2 yr -  1 slab fraction = 79%. 

- - w 0  [ 2 ( C  s in  8 + D c o s  8 )  - r c o s  8 ]  
lP'rl = U0 t r  

+ q ~ r  ( 3 2 )  

T h e  p r i n c i p a l  f e a t u r e s  o f  t h e  t r e n c h  m o d e l  c a n  

b e  s e e n  c l e a r l y  in  F i g s .  4 a n d  5. A s  in  t h e  r i d g e  
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L,,r= 3 1 ~  

." i: .';" ,;" .,"/" ./" ;' i" 
• ' . " ' ,.'-' , ; i  ." I- , '  

,, i , / /  rmm 
, / / / / / 

: ::s / 

. i ._~;?4.aL, / 

. 6 4  L r 

Fig. 5. As for Fig. 4 with a steeper subduction angle, fl = 60 o 
U o = 7 . 5 c m y r  I 7/=10 21 P a s . ( a )  High porosity, ~0=3.0%. 
w o / U  o = 1.91, flux = 1.2 × 10- 3 km 2 yr -  1. (b) Medium poros- 
ity, g'0 = 1.5%. The effect of downward advection by the matrix 
is more pronounced for larger ft. w o / U  o = 0.47, flux = 1.5 x 
10 -.4 km 2 yr -1. (c) Low porosity, ~0=0.6%. Subcritical 
w o / U  o = 0.07, shows saddlepomt. Back arc is entirely discon- 
nected from the slab. Flux = 9.4×10 -6 km 2 yr -1, slab frac- 
tion = 50%. 

m o d e l ,  m e l t  t h a t  l ies  in  t h e  e x t r a c t i o n  z o n e ,  s h o w n  

in  s t i p p l e ,  is d r a w n  to  t h e  w e d g e  c o m e r  ( r  = 0)  b y  

a s i n g u l a r i t y  in  t h e  p i e z o m e t r i c  p r e s s u r e  a t  t h e  

c o r n e r .  A n y  m e l t  o u t s i d e  th i s  r e g i o n  f o l l o w s  t h e  

s t r e a m l i n e s  u n t i l  i t  i n t e r s e c t s  t h e  l o w e r  b o u n d a r y  

o f  t h e  p l a t e  a b o v e  t h e  s i n k i n g  s l a b  ( 8  = 0) a n d  

t h e n  p e r c o l a t e s  v e r t i c a l l y ,  e i t h e r  t o  t h e  s u r f a c e  o r  

u n t i l  it  b e c o m e s  i n c o r p o r a t e d  i n t o  t h e  u p p e r  p l a t e .  

T h e  s u r f a c e  e x p r e s s i o n  o f  t h i s  b e h a v i o u r  wi l l  b e  

m a r k e d  b y  a n a r r o w  r e g i o n  o f  p r i m a r y  m a g m a t i s m  

d i r e c t l y  a b o v e  t h e  w e d g e  c o m e r  f o l l o w e d  b y  a 

n a r r o w  q u i e t  z o n e  o f  w i d t h  L T = L ( - 2 D )  1/2, 

w h e r e  t h e  m e l t  m o v e s  d o w n w a r d s  a n d  v o l c a n i s m  

s h o u l d  b e  a b s e n t ,  s u c c e e d e d  b y  a b r o a d  r e g i o n  o f  

d i f f u s e  m a g m a t i s m .  I f  t h e  r e g i o n  o f  p r i m a r y  
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magmatism above r = 0 represents the volcanic 
arc then it is important to note that the melt 
extracted at island arcs is not representative of the 
mantle directly beneath the arc but of a much 
larger region of melting. The behaviour of this 
extraction zone is surprisingly complex given the 
simplicity of the model. The shape of the extrac- 
tion zone is controlled by the angle of subduction 
and the dimensionless percolation velocity. The 
size, of course, is controlled by L. the only length 
scale in this problem. 

Analysis shows (Appendix B) that the points at 
which the bounding streamline intersects the up- 
per plate (0 = 0, r = LT) and the subducting slab 
(0 =/3, r = r~) depend only on the angle of sub- 
duction and L: therefore, the width of the quiet 
zone and the maximum length of slab that can be 
sampled by the arc magmatism are independent of 
porosity. This result can be seen by comparing 
Fig. 4a to 4b and 5a to 5b which show similar 
geometries but different porosities. Though the 
ends of the bounding streamline are fixed by /3 
and L, the path is controlled by w<j/l_~ and 
therefore by the porosity. If wo/U o is large, flow 
of melt is dominated by buoyancy and the draw of 
the singularity. Therefore the melt will tend to 
flow vertically then towards the wedge corner 
(Figs. 4a, 5a). However, as wo/U o becomes 
smaller, upward percolation is resisted by down- 
wards matrix flow and the melt will flow out 
sideways away from the slab until it can percolate 
upwards. This causes the bounding streamline to 
bulge outwards (Figs. 4b, 5b). 

This "bulging" will increase with decreasing 
wo/U o until a critical value of wo/L~ is reached, 
at which point the streamlines separate and the 
melt streamlines from the slab become partially 
disconnected from those in the overlying mantle 
wedge. Analysis shows that this critical value de- 
pends only on the angle of subduction (Appendix 
B). This relationship is shown in Fig. 6. 

Therefore, for a given subduction angle, if 
wo/U o is greater than the critical value all stream- 
lines passing through the wedge corner, and there- 
fore to the arc, will be connected to the subduct- 
ing slab (Figs. 4a, b; 5a, b). However, if wo/U~ is 
less than critical then a saddle point in the melt 
stream function exists where the draw of the sin- 
gularity balances the drag of the matrix and the 
last streamline that connects the subducting slab 

1.o i i t . . . . .  i . . . . . .  

o.8 ~- 

g . . . .  ~.oO, O6 

oo ~ - i  ..t 1 I A " 
o 30 ~o 9o 
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Fig. 6. Solid line is the cr i t ical  d imens ion less  pe rco l a t i on  

ve loc i ty  ( w o / L ~ )  as a func t ion  of  s u b d u c t i o n  angle .  F o r  

w o / & ~  g rea t e r  than  cri t ical ,  the  s lab is ent i rely c o n n e c t e d  to 

the sur face .  T h e  s lab becomes  pa r t i a l ly  d i s connec t ed  for  w o / & ~  
less than  cri t ical ,  

to the arc will be the streamline that passes through 
the saddlepoint (Figs. 4c, 5c). Any melt from the 
slab outside this last connected streamline will be 
carried down with the matrix. More importantly 
Figs. 4c and 5c show that this lost fluid cannot 
interact with the overlying mantle wedge. There- 
fore the melt extracted at the arc should show a 
smaller slab signature and material behind the arc 
should show no slab signature. 

A more quantitative measure of this behaviour 
can be found by calculating the melt flux from the 
extraction zone and the "slab fraction" of the 
total flux that is derived from the subducting slab. 
Unfortunately, unlike the ridge model, the melt 
flux from the extraction region is not uniquely 
determined. As before, it is given by: 

d M T 
I~T bound - -  ~ T m i n  I (33a) d t  p f ~ o U o  L i f f 

where: 

bound = 2 w° ~fl - U0 ( - 2 D )  I/2 (33b) 

is the value of the bounding streamline that con- 
nects the arc to the mantle and r ~Tmi. is the 
streamline that intersects the subducting slab (0 = 
/3) at some arbitrary distance rmi n. As rmm ---, 0 the 
flux becomes unbounded. As there is no preferred 
minimum distance, the calculated melt flux is at 
best an estimate although a reasonable range of 
values are calculated for rm, n =2t/2L/4. The 
surface through which the flux is calculated is 
shown in all the figures. 



If w o / U  o is greater than critical, the slab frac- 
tion is clearly 100%; however, if w o / U  o is less 
than critical the slab fraction is given by: 

q~T sad - ~ r ~  I 
S t = (34) 

I f 

where ~r is the value of the melt stream func- T sad 

tion at the saddlepoint. 
As was remarked before, the behaviour of even 

this simplest model for melt extraction at subduc- 
tion zones is surprisingly complex and shows that 
many of the ad hoc assumptions of the structure 
of subduction zones will have to be reevaluated. 
Furthermore, this model can be tested quantita- 
tively and can be used to place constraints on 
important parameters such as the porosity and 
matrix shear viscosity. The discussion will deal 
with these tests and their implications for the 
processes of melt extraction acting at subduction 
zones. 

7. Discussion 

Before discussing these models it is worth re- 
viewing the assumptions made and their implica- 
tions. Because of the primary assumptions of con- 
stant porosity and no melting, these models of 
melt extraction are not complete models of melt- 
ing and segregation. They indicate how melt will 
flow i f  it is present, but cannot predict its distribu- 
tion. When melting is included in a 2-D model, 
there will necessarily be porosity gradients (Ap- 
pendix C) and these could lead to instabilities or 
other unforeseen behaviour. Nevertheless, if melt- 
ing does not seriously perturb the matrix flow 
then the most significant feature of the simple 
models, extraction and concentration of melt by 
matrix shear, should carry through. The physical 
reason for this statement is clear. The focussing of 
melt towards the corner depends on the ~7 2 V term 
in equation (4) and therefore depends only on the 
matrix velocity field. On the length scale of this 
problem, 10-100 km, mass balance indicates that 
the real flow of the matrix near a ridge crest or 
subduction zone should approximate the ideal 
corner flow of the simple models and one should 
expect the melt to move in a manner similar to 
that illustrated in Figs. 2-5. If this is the case, 
then these models offer some simple explanations 
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for many of the major features of the geometry of 
ridge and subduction related volcanism. 

In the case of mid-ocean ridges, melt is ex- 
truded at the surface in narrow belts no more than 
5 km wide, yet the most reasonable mechanism for 
melt production, adiabatic pressure release, sug- 
gests that a broad partially molten zone should 
exist beneath ridges to depths of - 60 km [3]. The 
constant porosity ridge model reconciles both ob- 
servations by permitting the extraction of small 
melt fractions from a large region while at the 
same time extruding it at the surface in a narrow 
band. This model is also consistent with the ob- 
servation that ridges appear to be passive features 
uncoupled to any deep mantle structure [14]. The 
melt suction mechanism proposed here is strictly a 
local effect that depends only on the mantle defor- 
mation near a ridge crest and does not require the 
presence of a deep mantle plume. 

As for subduction related magmatism, the most 
notable feature is that nearly all major volcanic 
arcs lie in a narrow band 100-150 km above the 
seismically active region of the subducting slab 
[15]. While it is possible that significant partial 
melting occurs in this depth range, an alternative 
explanation is afforded by the subduction zone 
extraction model. Figs. 4 and 5 show that, regard- 
less of melt source, the principal fraction of melt 
in the mantle wedge will be drawn to the intersec- 
tion of the upper plate and the subducting slab. 
This junction should occur at the base of the 
mechanical boundary layer of the upper plate at 
depths of 90-100 km and the seismic zone in the 
subducting slab should be somewhat deeper. The 
simple model shows that there should always be a 
volcanic arc above the slab junction; however it 
also indicates that the nature of the melts ex- 
tracted can vary enormously depending on local 
conditions. Thus this model can qualitatively ex- 
plain both the constancy of volcanic arc geometry 
and the variety of island arc geochemistry. 

While the qualitative similarities are striking, 
the models can also be tested quantitatively. The 
most important results of these models are that 
they give us a length scale, L, and a velocity scale 
w 0, for melt extraction. With these, constraints 
can be placed on the two most poorly known 
parameters in the model, the matrix shear viscos- 
ity which controls L and the porosity which 
dominates w 0. 
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Fig. 7. Values of" ~7, ~o, and ~ that wil l  produce 6 km of  
oceanic crust as calculated from the ridge model. Contours are 
half spreading rates in cm yr - i. 

For the ridge model, the crustal thickness pro- 
duced by the extraction zone is most useful for 
constraining r /and ft. Physically, the simple model 
implies that the prerequisite 6 km of oceanic crust 
can either be produced by extracting small melt 
fractions from a wide area or larger melt fractions 
from a narrow extraction zone. Fig. 7 shows the 
combinations of 77 and q~ for a given half spread- 
ing rate that will produce 6 km of crust as calcu- 
lated from the constant porosity model. As 
spreading rates are known, if limits can be placed 
on either viscosity or porosity, then the other 
parameter can be determined. Fortunately, there 
are at least two independent arguments for viscos- 
ity and porosity and both faw)r the combination 
of high viscosity, 10z°-10 2~ Pa s, and small poros- 
ity, 2-4%. 

The simplest explanation for axial ridge valleys 
is that they are dynamically supported, and their 
width then depends on the matrix viscosity 
[10,11,17]. Under these conditions they should be 
supported by the same stresses responsible for 
melt extraction and therefore the length scale given 
by the width of axial valleys should be related to 
the length scale of melt extraction. Skilbeck [10] 

shows that to support axial valleys tens of kilome- 
ters in width requires shear viscosities of 10 2o- 10 2~ 
Pa s. This argument is certainly valid for slow- 
spreading ridges that show prominent axial val- 
leys, but is more problematic for fast spreading 
ridges without axial valleys. 

For estimates of the mean porosity of the melt- 
ing zone beneath ridges, a simple scaling argument 
(Appendix C) shows it must be small - 2-4% if 
reasonable assumptions are made about melting 
and melt extraction. This argument estimates the 
mean porosity that can be supported by a given 
melting rate against compaction due to melt ex- 
traction. The results are shown in Table 2 and 
show two important features. First for reasonable 
degrees of total melt generation (10--20% by 
volume) the porosity at any time is small, 2-3%. 
This is supported quantitatively by the I -D melt- 
ing models [6,7]. Second, Table 2 implies that 
faster spreading ridges should have slightly higher 
porosities. Physically this also m'a_kes sense. If the 
primary melting mechanism is adiabatic pressure 
release [3] then the melting rate should be propor- 
tional to the upwelling velocity and faster melting 
rates can support higher porosities. 

The implications of these two results are clear. 
First, if ¢, is small, the simple model requires a 
large extraction length to produce 6 km of crust. 
Inspection of Fig. 7 shows that this implies a large 
matrix viscosity, consistent with the shape of axial 
valleys. Second, if the porosity increases with 
spreading rate it is possible to reconcile the results 
of the simple model with the observation that 
oceanic crustal thickness is apparently indepen- 
dent of spreading rate. Equation (27) and Fig. 7 
both imply that to produce a constant 6 km of 
crust requires a small increase in the porosity, 
- 1% for an order of magnitude increase in the 
spreading rate, which is comparable to the in- 
crease in porosity predicted by the simple scaling 
argument. This argument is self consistent and fits 

TABLE 2 

Expected mean porosity (%) as a function of the degree of partial melting and spreading rate 

Total degree Half spreading rate (cm yr- l ) 

of partial melting 1.0 2.5 5.0 7.5 10.0 

10% 1.2 1.6 2.0 2.3 2.5 
20% 1.6 2.1 2.6 3.0 3.3 



both qualitatively and quantitatively what little is 
known of  the melt extraction processes at mid- 
ocean ridges. 

If  little is known about  melt product ion and 
extraction at ridges, even less is known about  the 
processes governing subduction related volcanism. 
Fortunately,  the subduct ion zone model is insensi- 
tive to the nature of  the "mel t "  or " f lu id"  derived 
f rom the slab or to how it moves out of  the slab. 
As long as a low viscosity phase is present at the 
surface of  the slab, the simple model indicates 
how it should flow through the mantle wedge. 
However,  if that phase can be identified by its 
isotopic "s lab  signature" and can maintain that 
signature throughout  its movement ,  the simple 
model presented here offers several quantitative 
internal checks for validity. The isotopic ratio we 
will use for determining slab signature is 87Sr/86Sr 
as it records sea water alteration of  the oceanic 
crust by hydrothermal  circulation through the 
ridge flanks [21]. Altered oceanic crust should 
show a higher 87Sr/S6Sr ratio than unaltered crust. 
This geochemistry forms the basis for tests of the 
simple model, which we-will first outline and then 
apply to the central-eastern Aleutians and show 
that this model can account  for the observations 
in a consistent manner.  

The subduct ion zone model offers three inde- 
pendent  methods for estimating L and w o / U  o. 

The first and most  obvious test gives a direct 
measure of  the length scale of  extraction. The 
simple model predicts that the pr imary arc should 
show signs of shallow melting with some slab 
signature while the first melts to reach the surface 
behind the arc should show signs of  deeper melt- 
ing or no slab signature at all. The distance behind 
the arc where this change should occur is roughly 
r = L T and depends only on the angle of  subduc-  
tion and the length scale of extraction. Therefore, 
to find L requires a carefully sampled traverse 
across an arc of known subduction angle showing 
secondary back arc magmat ism from - 3 -100  km 
behind the arc. Any  abrupt  change in chemistry 
will give the length scale of  extraction. If L can be 
determined by this method and the volume flux 
per length of trench is known, then constraints 
can be placed on w o / U  o as was done for the ridge 
problem. Fig. 8 shows the mel t - f lux /L-  r plotted 
against subduct ion angle for contours  of w o / U  o 

as calculated from the simple model. If L T, the 

147 

- 4  i t i i i 1 i t 

/ 

~ 0 4  
~ 0.3 
~ ~" 0.2 Q~ 

~ o  - 6  - ~ ° ~  

- -  ' Wo U o : O , t ~  

- 7  

1 0  3 0  5 0  7 0  9 0  

Subductlon Angle (deg) 

Fig. 8. Volcanic arc melt flux (per length of arc, km 2 yr -1) 
normalized by L T, as a function of subduction angle and 
wo/U o. The bold line shows flux/LT for critical values of 
wo/U o. Values plotting above the critical line have slabs that 
connect to the surface. Values plotting below have discon- 
nected slabs. The stippled region shows data from the Central 
and Eastern Aleutians and indicates that the Aleutians are near 
critical and should show little to no slab signature in the 
back-arc region. 

melt flux, subduct ion angle and subduction rate 
are known then w o / U  o can be read off the graph. 
The final check for consistency is geochemical. If 
13 and w o / U  o are known then Fig. 6 (or 8) pre- 
dicts whether or not  the slab should be connected 
to the back arc. If w o / U  o is near the critical value 
for a given subduction angle then the back arc 
volcanism should show little to no slab signature. 

Therefore, to test this model the following data 
are needed for an arc with subsidiary back arc 
volcanism: (1) angle of  subduction near the plate 
junct ion,  (2) geochemical data as a function of 
position behind the arc, (3) the subduction rate 
U 0, and (4) the flux per unit length of  arc. One 
region where all these measurements  have been 
carried out is the central and eastern Aleutians, 
especially the Cold Bay region with the second arc 
volcano at Amak  [18]. While the geochemical data 
for the secondary volcanism is sparse it is still 
sufficient to constrain the model and explain some 
of  the features of  this region. Fig. 9 shows 
87Sr/86Sr [18] plotted against distance for the 
pr imary arc, the Frosty peak volcanoes ( -  3 km), 
Mount  Baldy ash flow ( -  10 km), the second arc 
volcanoes Amak  (42 km) and Bogoslof ( -  50 -60  
km) and the back-arc islands of  St. George (300 
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Fig. 9. ~Sr/~rSr as a function of distance behind the primary 
volcanic arc for the Central and Eastern Aleutians (data from 
von Drach et al. [18]). Distance scale is logarithmic and data 
are shown for 0, 3, 9, 42, 60, 300 and 600 km. The sharp drop 
in 87Sr/86Sr at - 10 km is consistent with values at - 50 km 
and behind. Far back-arc samples are for reference and should 
show no slab contribution. 

km) and Nunivak  (600 km). The last two are for 
reference as they should be far enough removed 
from the subduct ion  zone as to only record mant le  
melt ing in the back arc region. 

Fig. 9 shows a sharp drop in 87Sr/86Sr at 10 km 

which is consistent  with the values at 50 km and 
back and is representative of typical unaltered 
Pacific MORB levels [18]. As the subduct ion angle 

is f l =  60-70  ° [19] this gives a range of length 
scales from 10 to 50 km (rl - 102°-3 × 10 21 Pa s). 

Melt flux per km of arc for the central Aleu- 
t ians is calculated to be 3.5 × 10 -5 km 2 yr - ]  [1]. 

F l u x / L -  r and fl are plotted (Fig. 8) for the Aleu- 
t ians with subduct ion  rate 7 c m / y r  [20] and give 

wo/U o -  0.15 for L T -  50 km and wo/U o -  0.41 
for L v -  10 kin. Melt streamlines for these two 
end members  are shown in Fig. 10. For the longer 
length scale the slab should be entirely discon- 
nected from the secondary arc which is consistent 
with the uniformly low 87Sr/S6Sr values in the 

back arc. For  L v - 10 km, while the entire slab is 
connected,  the melt streamlines for the back arc 

L,rt 10 k m ~  

Fig. 10. Melt and matrix streamlines for the two end member 
models of the Aleutian arc. B = 65 o, Uo = 7 cm yr- i. Length 
of slab sampled at the primary arc in both cases is - 50 krn. 
(a) Short length scale, L r = -10 km ('0 = 1.1 × 10 2° Pa s); 
wo/Uo=0.41 (~=1.35%), flux = 3.2 ×10 -5 km 2 yr -t. (b) 
Long length scale, LT = --50 km (r/=3.0×1021 Pa s); 
w0/U0=0.14 (g,=0.8%), flux = 3.4 ×10 -5 km 2 yr -1, slab 
fraction = 59%. 

region are probably  sufficiently indirect that the 
slab cont r ibut ion  is minimal.  While clearly ob- 
servations from other arcs are required to say 
anyth ing  conclusive, this first simple test shows no 
glaring inconsistencies. 

8. Conclusions 

These models indicate that for reasonable ma- 
trix viscosities, 102° -10  21 Pa s, the movement  of 

melt beneath mid-ocean ridges and island arcs is 
controlled by non-zero V 2V shear in the matrix. 
The pressure gradients generated by corner flow 
of the matrix at spreading centers cause melt to 
migrate toward the ridge axis enabl ing  the extrac- 
tion of small melt fractions from a wide melt ing 
zone yet producing a narrow zone of volcanism at 
the surface. Similarly corner flow in the mant le  
wedge beneath island arcs causes melt to flow to 
the slab-plate junc t ion  and can account  for the 
concent ra t ion  of volcanism in regions where earth- 
quakes in the subduct ing  slab reach a depth of 
100-150 km. The subduct ion  zone model also 
implies that the geochemistry of island arc 



volcanism will be strongly influenced by the 
geometry of melt streamlines and the connectivity 
of the slab with the overlying mantle wedge. 
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Appendix A--General equations in two dimensions 

The simplest set of equations for the conservation of mass 
and momentum in two dimensions plus time are easily derived 
from the general equations (1) to (5). If Pf and p~ are constant, 
equation (2) becomes: 

Dv#, i)~ F 
+ V. WO = (1 - q ~ ) V ' V +  - -  (A1) 

Dt ~t Os 

Taking the curl of equation (4) gives: 

"qV 2( W V) 1 - - -  ( a 2 )  
x = - A p g o x  - 8x g 

and adding equations (1) and (2) and substituting in (3) and (4) 
yields: 

V ' [ ~ ( ~ v 2 V + ( I ~ + ~ / 3 ) V ( V ' V ) + ( I - ( p ) A o g k ]  

FAO 
= 17'. V - - -  ( A 3 )  

PfP~ 

Equation (A1) is the conservation of mass for the matrix 
and states that the change in porosity in a frame fixed to the 
matrix is the difference between compaction (Div V < 0) and 
melting. (A2) shows that the vorticity of the matrix is 
maintained by horizontal porosity gradients and in general by 
horizontal density gradients. Equation (A3) is the most com- 
plicated of the three but the physics is quite straightforward. 
The left-hand side is simply the net melt flux through a small 
volume of matrix and the right-hand side is the sum of 
compaction and the volume change on melting. Therefore. the 
amount of melt that can be extracted from a small volume 
depends on how much is squeezed out by compaction and how 
much is expelled by the increased volume of the melt. Pre- 
liminary work indicates that (A3) will be dominated by the 
non-linear behaviour of the permeability with respect to small 
changes in porosity. Furthermore, if the volume changes are 
relatively small and the buoyancy term is large (third term on 
left-hand side of (A3)) then the compaction will be controlled 
by the extraction of melt by gravity and less by the viscosity of 
the matrix. 

If the permeability and the melting function are known (or 
presupposed) then (AI) to (A3) can be solved for porosity and 
the two components of V, subject to appropriate boundary 
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conditions. Once these are known, V.~, k , ,  and therefore v 
are completely determined by equations (3) to (5). 

Equations with constant porosity and no melting 

if q~=% and F = 0 ,  equations (A1) to (A3) reduce to a 
very simple form. Equations (AI) and (A2) become, respec- 
tively: 

W" V = 0 (A4) 

v 2 ( v x  v) = 0 (AS) 

and (A3) vanishes identically. By writing V in potential form 
(equation (7)) then (A4) is satisfied explicitly and (A5) reduces 
to the biharrnonic equation which is easily solved for corner 
flow boundary conditions. 

Appendix B--Analysis: ridge and trench models 

Ridge model 

Estimation of wedge angle a. A straightforward definition of a 
is shown in Fig. lb  and derives from an argument from 
Skilbeck [10]. If we assume that the actual shape of the 
lithospheric plate near a ridge axis is controlled by the thermal 
history of the plate then a reasonable approximation for the 
wedge angle is: 

t a n - ,  [ d ( L R )  ] ~= LR ] (ma) 

where 

d(LR)  - 2( ~r"LR ] , /2  (Bib)  

is approximately the depth a coofing pulse in an infinite half 
space would have traveled in time t = LR/U o, and therefore is 
approximately the thickness of the lithosphere at a distance L R 
from the ridge axis. K is the thermal diffusivity of the mantle 
and LR is the characteristic length scale for the ridge. Unfor- 
tunately, inspection of Figs. 2 and 3 shows quite clearly that 
the characteristic length scale for melt extraction at ridges i s :  

L R = L(2B) '/2 (B2) 

where L and B are defined as before and B depends on the 

wedge angle a. Therefore, (B2) yields a transcendental equa- 

tion for a which was solved using a simple iterative scheme 
starting from a = 0 in (B2). 

Solution for the bounding streamline. Saddlepoints exist at val- 
ues of r and 0 for which: 

v =  W X  (Lkkf) = O (B3a) 

or: 

+1 c o s 0 + . 4 c o s 0 - B ( c o s 0 - 0 s i n 0 ) = 0  
vo 

(B3b) 

~ - - 1  s i n 0 + , 4 s i n 0 - B 0 c o s 0 = 0  (B3c) 
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Eliminating r 2 terms, saddlepoints exist where 

ga(O) BOcos2O+ { w° B ] = , - - + - - A  s i n2O =O  (B4) 
~ ,  2 ! 

If gR( ~ / 2 -  ~) > 0 no saddlepoints exist within the boundaries. 
In this case the bounding streamline is the one that is tangent 
to the boundaries at 0 = ~ / 2 -  a or: 

ve( r, ~r /2-  a )  = - ~p~ = 0 (B5a) 
"dr O ~/'2 ,, 

that is: 

r t a  n = 2(w°/U°)B( wo ) 71/" 

B(."r/2- a) sin a + -Ia~o - A c o s a  

(BSb) 

Subductton zone model 

Criucal value of wo/U o. A given streamline is found by plot- 
ting: 

a ( 0 ) r  2 ,/,!, r w(, - - 2 ~ ( C s i n O + D O c o s O ) = O  (B6a) 

for a fixed value of 4,~r where: 

w 0 

a ( O ) = C ( s i n O - O c o s O ) +  D O s i n O + - - c o s O  (B6b) 

Whether or not the slab is wholly connected to the wedge 
corner depends only on the zeros of a(O). For 1/, = 0, where 
a = 0. r -~ o¢. If wo/U o is greater than the critical value then 
a has no zeros. If wo/U o is less than critical, a has two zeros 
and the zero streamline can never connect. The critical value of 
wo/U o occurs when a has only one zero. When this happens, 
the zero streamline is connected but only as r --+ ~ .  Therefore. 
the critical value of wo/U o as a function of the subduction 
angle fl can be found by solving the simultaneous equations: 

a ( 0 )  = 0  
da/dO = 0 (B7) 

This was done numerically and the results are shown in 
Fig. 6. 

Solutton for the bounding streamhne. Inspection of Figs. 4 and 5 
shows that the bounding streamline that connects the mantle 
wedge to the wedge corner is the one that is tangent at the 
upper boundary (O = 0). As in the ridge model, this implies 
that % = 0 at O = 0. The tangent point is then easily computed 
to be: 

L.) = L ( - 2 D )  I/2 ( D < 0 )  (B8) 

and is independent of wo/U o. The value of the bounding 
streamline is then simply 

W O 

~k!, b,,una = 2--U(- ) ( - 2D ) '/2 (B9) 

and the intersection of this streamline with the lower slab can 

then be found using (B6) and (B9) with 0 = ft. This gives: 

rtl = L [ ( - 2 D ) ' /2 + [ 2 c°s ~ ( C sin B + D c°s ~ ) - 2 D ] ' /2 ] c o s , 8  

which is also independent of wo/U o. 

(BI0) 

Solution of saddlepoint: subduction zone model. In the subduc- 
tion zone model the melt stream function will develop a 
saddlepoint if wo/U o is less than the critical value. As before 
the saddlepoint exists where v = gr × (q.,~.f) = O or solving for 
0 only, the saddlepoint exists where: 

d 
~ , ( 0 )  = dO[(C sin 0 + D cos 0 ) a ( 0 ) ]  = 0 ( B l l )  

The last streamline to connect the subducting slab to the 
wedge corner is the streamline that passes through the saddle- 
point. The point where this streamline intersects the subduct- 
ing slab at 0 = 13 is solved for numerically. 

A p p e n d i x  C - -  A sca l ing  argument  to e s t imate  
porosi ty  in the presence  o f  me l t ing  

In steady state, the porosity is governed by: 

I" 
v. v,~, = ( I -  ~,) v,- v + - ( c i )  

P, 

which states that the equilibrium value of the porosity is 
controlled by the balance of compaction and melting. Now, if 
the results of the I-D models are applicable to two dimensions. 
then compaction is primarily the result nf melt extraction by 
differential buoyancy and equation (A3) can be approximated 
by: 

I T . V - - V . [ ~ ( 1 - q J ) A # g k l + l , z ,  (("2) 

where At, is the volume change on melting and /~ now points 
upwards. Equation (C2) shows that where the porosity is near 
zero, and therefl)re separation is negligible, the matrix must 
expand to take up the volume increase on melting. Beneath 
ridges, this region will be near the lower boundary of the 
melting zone. In this region the porosity will grow rapidly until 
the permeability is high enough to permit separation by 
buoyancy. Once separation becomes significant, however, the 
matrix must compact and porosity will grow more slowly. This 
is supported by the I-D melting models [6,7 I. Schematically 
this is shown in Fig. 11. An important consequence of equa- 
tions (C1) and (C2) is that the porosity can never be indepen- 
dent of position in steady state unless F -= 0. 

More importantly, these equations can be used to estimate 
the melting rate required to support a mean porosity q'0 
against compaction, or conversely, they can be used to estimate 
the characteristic porosity produced by a constant rate of 
melting over a melting depth /. This estimate is based on the 
following assumptions: 

(1) I" = I" o over the melting range 
(2) q~ - q~(z) porosity changes are primarily in the z direc- 
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Fig. 11. Schematic diagram for scaling argument (Appendix C) 
showing 1-D porosity profile as a function of height above the 
base of the melting zone. Dashed line shows porosity profile 
for constant melting rate and no separation. Solid curve is the 
porosity profile when separation of melt from the matrix by 
buoyancy is significant (see [6,7]). ep0 is the characteristic 
porosity with separation. / is the thickness of the melting zone. 

tion. 
(3) (1 - ,~) - 1 mean porosity is small 
(4) k ,  - a2~"/c 
(5) At, is negligible 

Substituting these into (C1) and (C2) yields: 

- -  w +  A o g  - - -  (c3) 
,3z p~ 

Now, W -  U o and inspection of Figure 11 shows that: 

¢ - % 

a,t, % (c4) 
az / 

where 9o is the characteristic porosity. To  first order then, 
(C3) becomes: 

- ~o(1  + n w° P (C5a) 

where: 

p =/lo/p,Uo (C5b) 
is the "total degree of partial melting", that is, the volume 
fraction of matrix melted by passing through a constant melt- 
ing zone of length I at speed U 0. Physically (C5a) is reasonable 
as it shows that in the absence of separation (w 0 = 0) the 
porosity equals the degree of partial melting whereas if sep- 
aration is important, the mean porosity must be smaller than 
p. (C5) also shows that for a fixed degree of partial melting, 
fast spreading ridges should show a slightly higher porosity. 
This is also reasonable as (C5b) shows that to produce the 
same degree of partial melting at fast ridges requires a higher 
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melting rate and higher melting rates can support higher mean 
porosities. 
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