libQZ.neardist
changeset 17 4b7486d77b39
new file mode 100644
--- /dev/null
+++ b/libQZ.neardist
@@ -0,0 +1,1355 @@
+#======================================================================
+#                    L I B Q Z . P L 
+#                    doc: Thu Mar 12 15:23:15 2015
+#                    dlm: Thu Mar 12 20:52:43 2015
+#                    (c) 2015 A.M. Thurnherr
+#                    uE-Info: 36 0 NIL 0 0 72 2 2 4 NIL ofnI
+#======================================================================
+
+# adaptation of EISPACK routines
+
+# www.netlib.org/eispack
+
+sub eig($$)
+{
+	my($aR,$bR) = @_;							# args passed as refs
+
+	my($N) = scalar(@{aR});
+	croak("eig(A,B): A & B must be matching square matrices\n")
+		unless (@{bR} == $N) && (@{$aR->[0]} == $N) && (@{$bR->[0]} == $N);
+
+		ar = new double[n];
+		ai = new double[n];
+		beta = new double[n];
+		var A = (double[,])a.Clone();
+		var B = (double[,])b.Clone();
+
+	my($matZ) = 1;
+	my($iErr) = 0;
+
+	my(@Z);
+	QZhes($aR,$bR,\@Z);								# reduce A/B to upper Hessenberg/triangular forms
+	QZit($aR,$bR,\@Z,\$iErr);						# reduce Hess A to quasi-triangular form
+	QZval($aR,$bR,\@Z,\@alphaR,\@alphaI,\@beta);	# reduce A further
+	QZvec($aR,$bR,\@Z,\@alphaR,\@alphaI,\@beta);	# compute eigenvectors & eigenvalues
+}
+
+
+	/// <summary>Returns the real parts of the alpha values.</summary>
+	public double[] RealAlphas
+	{
+		get { return ar; }
+	}
+
+	/// <summary>Returns the imaginary parts of the alpha values.</summary>
+	public double[] ImaginaryAlphas
+	{
+		get { return ai; }
+	}
+
+	/// <summary>Returns the beta values.</summary>
+	public double[] Betas
+	{
+		get { return beta; }
+	}
+
+	/// <summary>
+	///   Returns true if matrix B is singular.
+	/// </summary>
+	/// <remarks>
+	///   This method checks if any of the generated betas is zero. It
+	///   does not says that the problem is singular, but only that one
+	///   of the matrices of the pencil (A,B) is singular.
+	/// </remarks>
+	public bool IsSingular
+	{
+		get
+		{
+			for (int i = 0; i < n; i++)
+				if (beta[i] == 0)
+					return true;
+			return false;
+		}
+	}
+
+	/// <summary>
+	///   Returns true if the eigenvalue problem is degenerate (ill-posed).
+	/// </summary>
+	public bool IsDegenerate
+	{
+		get
+		{
+			for (int i = 0; i < n; i++)
+				if (beta[i] == 0 && ar[i] == 0)
+					return true;
+			return false;
+		}
+	}
+
+	/// <summary>Returns the real parts of the eigenvalues.</summary>
+	/// <remarks>
+	///   The eigenvalues are computed using the ratio alpha[i]/beta[i],
+	///   which can lead to valid, but infinite eigenvalues.
+	/// </remarks>
+	public double[] RealEigenvalues
+	{
+		get
+		{
+			// ((alfr+i*alfi)/beta)
+			double[] eval = new double[n];
+			for (int i = 0; i < n; i++)
+				eval[i] = ar[i] / beta[i];
+			return eval;
+		}
+	}
+
+	/// <summary>Returns the imaginary parts of the eigenvalues.</summary>  
+	/// <remarks>
+	///   The eigenvalues are computed using the ratio alpha[i]/beta[i],
+	///   which can lead to valid, but infinite eigenvalues.
+	/// </remarks>
+	public double[] ImaginaryEigenvalues
+	{
+		get
+		{
+			// ((alfr+i*alfi)/beta)
+			double[] eval = new double[n];
+			for (int i = 0; i < n; i++)
+				eval[i] = ai[i] / beta[i];
+			return eval;
+		}
+	}
+
+	/// <summary>Returns the eigenvector matrix.</summary>
+	public double[,] Eigenvectors
+	{
+		get
+		{
+			return Z;
+		}
+	}
+
+	/// <summary>Returns the block diagonal eigenvalue matrix.</summary>
+	public double[,] DiagonalMatrix
+	{
+		get
+		{
+			double[,] x = new double[n, n];
+
+			for (int i = 0; i < n; i++)
+			{
+				for (int j = 0; j < n; j++)
+					x[i, j] = 0.0;
+
+				x[i, i] = ar[i] / beta[i];
+				if (ai[i] > 0)
+					x[i, i + 1] = ai[i] / beta[i];
+				else if (ai[i] < 0)
+					x[i, i - 1] = ai[i] / beta[i];
+			}
+
+			return x;
+		}
+	}
+
+
+
+	#region EISPACK Routines
+	/// <summary>
+	///   Adaptation of the original Fortran QZHES routine from EISPACK.
+	/// </summary>
+	/// <remarks>
+	///   This subroutine is the first step of the qz algorithm
+	///   for solving generalized matrix eigenvalue problems,
+	///   siam j. numer. anal. 10, 241-256(1973) by moler and stewart.
+	///
+	///   This subroutine accepts a pair of real general matrices and
+	///   reduces one of them to upper hessenberg form and the other
+	///   to upper triangular form using orthogonal transformations.
+	///   it is usually followed by  qzit,	qzval  and, possibly,  qzvec.
+	///  
+	///   For the full documentation, please check the original function.
+	/// </remarks>
+	private static int qzhes(int n, double[,] a, double[,] b, bool matz, double[,] z)
+	{
+		int i, j, k, l;
+		double r, s, t;
+		int l1;
+		double u1, u2, v1, v2;
+		int lb, nk1;
+		double rho;
+
+
+		if (matz)
+		{
+			// If we are interested in computing the
+			//	eigenvectors, set Z to identity(n,n)
+			for (j = 0; j < n; ++j)
+			{
+				for (i = 0; i < n; ++i)
+					z[i, j] = 0.0;
+				z[j, j] = 1.0;
+			}
+		}
+
+		// Reduce b to upper triangular form
+		if (n <= 1) return 0;
+		for (l = 0; l < n - 1; ++l)
+		{
+			l1 = l + 1;
+			s = 0.0;
+
+			for (i = l1; i < n; ++i)
+				s += (System.Math.Abs(b[i, l]));
+
+			if (s == 0.0) continue;
+			s += (System.Math.Abs(b[l, l]));
+			r = 0.0;
+
+			for (i = l; i < n; ++i)
+			{
+				// Computing 2nd power
+				b[i, l] /= s;
+				r += b[i, l] * b[i, l];
+			}
+
+			r = Special.Sign(System.Math.Sqrt(r), b[l, l]);
+			b[l, l] += r;
+			rho = r * b[l, l];
+
+			for (j = l1; j < n; ++j)
+			{
+				t = 0.0;
+				for (i = l; i < n; ++i)
+					t += b[i, l] * b[i, j];
+				t = -t / rho;
+				for (i = l; i < n; ++i)
+					b[i, j] += t * b[i, l];
+			}
+
+			for (j = 0; j < n; ++j)
+			{
+				t = 0.0;
+				for (i = l; i < n; ++i)
+					t += b[i, l] * a[i, j];
+				t = -t / rho;
+				for (i = l; i < n; ++i)
+					a[i, j] += t * b[i, l];
+			}
+
+			b[l, l] = -s * r;
+			for (i = l1; i < n; ++i)
+				b[i, l] = 0.0;
+		}
+
+		// Reduce a to upper hessenberg form, while keeping b triangular
+		if (n == 2) return 0;
+		for (k = 0; k < n - 2; ++k)
+		{
+			nk1 = n - 2 - k;
+
+			// for l=n-1 step -1 until k+1 do
+			for (lb = 0; lb < nk1; ++lb)
+			{
+				l = n - lb - 2;
+				l1 = l + 1;
+
+				// Zero a(l+1,k)
+				s = (System.Math.Abs(a[l, k])) + (System.Math.Abs(a[l1, k]));
+
+				if (s == 0.0) continue;
+				u1 = a[l, k] / s;
+				u2 = a[l1, k] / s;
+				r = Special.Sign(Math.Sqrt(u1 * u1 + u2 * u2), u1);
+				v1 = -(u1 + r) / r;
+				v2 = -u2 / r;
+				u2 = v2 / v1;
+
+				for (j = k; j < n; ++j)
+				{
+					t = a[l, j] + u2 * a[l1, j];
+					a[l, j] += t * v1;
+					a[l1, j] += t * v2;
+				}
+
+				a[l1, k] = 0.0;
+
+				for (j = l; j < n; ++j)
+				{
+					t = b[l, j] + u2 * b[l1, j];
+					b[l, j] += t * v1;
+					b[l1, j] += t * v2;
+				}
+
+				// Zero b(l+1,l)
+				s = (System.Math.Abs(b[l1, l1])) + (System.Math.Abs(b[l1, l]));
+
+				if (s == 0.0) continue;
+				u1 = b[l1, l1] / s;
+				u2 = b[l1, l] / s;
+				r = Special.Sign(Math.Sqrt(u1 * u1 + u2 * u2), u1);
+				v1 = -(u1 + r) / r;
+				v2 = -u2 / r;
+				u2 = v2 / v1;
+
+				for (i = 0; i <= l1; ++i)
+				{
+					t = b[i, l1] + u2 * b[i, l];
+					b[i, l1] += t * v1;
+					b[i, l] += t * v2;
+				}
+
+				b[l1, l] = 0.0;
+
+				for (i = 0; i < n; ++i)
+				{
+					t = a[i, l1] + u2 * a[i, l];
+					a[i, l1] += t * v1;
+					a[i, l] += t * v2;
+				}
+
+				if (matz)
+				{
+					for (i = 0; i < n; ++i)
+					{
+						t = z[i, l1] + u2 * z[i, l];
+						z[i, l1] += t * v1;
+						z[i, l] += t * v2;
+					}
+				}
+			}
+		}
+
+		return 0;
+	}
+
+	/// <summary>
+	///   Adaptation of the original Fortran QZIT routine from EISPACK.
+	/// </summary>
+	/// <remarks>
+	///   This subroutine is the second step of the qz algorithm
+	///   for solving generalized matrix eigenvalue problems,
+	///   siam j. numer. anal. 10, 241-256(1973) by moler and stewart,
+	///   as modified in technical note nasa tn d-7305(1973) by ward.
+	///  
+	///   This subroutine accepts a pair of real matrices, one of them
+	///   in upper hessenberg form and the other in upper triangular form.
+	///   it reduces the hessenberg matrix to quasi-triangular form using
+	///   orthogonal transformations while maintaining the triangular form
+	///   of the other matrix.	it is usually preceded by  qzhes  and
+	///   followed by  qzval  and, possibly,  qzvec.
+	///  
+	///   For the full documentation, please check the original function.
+	/// </remarks>
+	private static int qzit(int n, double[,] a, double[,] b, double eps1, bool matz, double[,] z, ref int ierr)
+	{
+
+		int i, j, k, l = 0;
+		double r, s, t, a1, a2, a3 = 0;
+		int k1, k2, l1, ll;
+		double u1, u2, u3;
+		double v1, v2, v3;
+		double a11, a12, a21, a22, a33, a34, a43, a44;
+		double b11, b12, b22, b33, b34, b44;
+		int na, en, ld;
+		double ep;
+		double sh = 0;
+		int km1, lm1 = 0;
+		double ani, bni;
+		int ish, itn, its, enm2, lor1;
+		double epsa, epsb, anorm = 0, bnorm = 0;
+		int enorn;
+		bool notlas;
+
+
+		ierr = 0;
+
+		#region Compute epsa and epsb
+		for (i = 0; i < n; ++i)
+		{
+			ani = 0.0;
+			bni = 0.0;
+
+			if (i != 0)
+				ani = (Math.Abs(a[i, (i - 1)]));
+
+			for (j = i; j < n; ++j)
+			{
+				ani += Math.Abs(a[i, j]);
+				bni += Math.Abs(b[i, j]);
+			}
+
+			if (ani > anorm) anorm = ani;
+			if (bni > bnorm) bnorm = bni;
+		}
+
+		if (anorm == 0.0) anorm = 1.0;
+		if (bnorm == 0.0) bnorm = 1.0;
+
+		ep = eps1;
+		if (ep == 0.0)
+		{
+			// Use roundoff level if eps1 is zero
+			ep = Special.Epslon(1.0);
+		}
+
+		epsa = ep * anorm;
+		epsb = ep * bnorm;
+		#endregion
+
+
+		// Reduce a to quasi-triangular form, while keeping b triangular
+		lor1 = 0;
+		enorn = n;
+		en = n - 1;
+		itn = n * 30;
+
+	// Begin QZ step
+	L60:
+		if (en <= 1) goto L1001;
+		if (!matz) enorn = en + 1;
+
+		its = 0;
+		na = en - 1;
+		enm2 = na;
+
+	L70:
+		ish = 2;
+		// Check for convergence or reducibility.
+		for (ll = 0; ll <= en; ++ll)
+		{
+			lm1 = en - ll - 1;
+			l = lm1 + 1;
+
+			if (l + 1 == 1)
+				goto L95;
+
+			if ((Math.Abs(a[l, lm1])) <= epsa)
+				break;
+		}
+
+	L90:
+		a[l, lm1] = 0.0;
+		if (l < na) goto L95;
+
+		// 1-by-1 or 2-by-2 block isolated
+		en = lm1;
+		goto L60;
+
+	// Check for small top of b
+	L95:
+		ld = l;
+
+	L100:
+		l1 = l + 1;
+		b11 = b[l, l];
+
+		if (Math.Abs(b11) > epsb) goto L120;
+
+		b[l, l] = 0.0;
+		s = (Math.Abs(a[l, l]) + Math.Abs(a[l1, l]));
+		u1 = a[l, l] / s;
+		u2 = a[l1, l] / s;
+		r = Special.Sign(Math.Sqrt(u1 * u1 + u2 * u2), u1);
+		v1 = -(u1 + r) / r;
+		v2 = -u2 / r;
+		u2 = v2 / v1;
+
+		for (j = l; j < enorn; ++j)
+		{
+			t = a[l, j] + u2 * a[l1, j];
+			a[l, j] += t * v1;
+			a[l1, j] += t * v2;
+
+			t = b[l, j] + u2 * b[l1, j];
+			b[l, j] += t * v1;
+			b[l1, j] += t * v2;
+		}
+
+		if (l != 0)
+			a[l, lm1] = -a[l, lm1];
+
+		lm1 = l;
+		l = l1;
+		goto L90;
+
+	L120:
+		a11 = a[l, l] / b11;
+		a21 = a[l1, l] / b11;
+		if (ish == 1) goto L140;
+
+		// Iteration strategy
+		if (itn == 0) goto L1000;
+		if (its == 10) goto L155;
+
+		// Determine type of shift
+		b22 = b[l1, l1];
+		if (Math.Abs(b22) < epsb) b22 = epsb;
+		b33 = b[na, na];
+		if (Math.Abs(b33) < epsb) b33 = epsb;
+		b44 = b[en, en];
+		if (Math.Abs(b44) < epsb) b44 = epsb;
+		a33 = a[na, na] / b33;
+		a34 = a[na, en] / b44;
+		a43 = a[en, na] / b33;
+		a44 = a[en, en] / b44;
+		b34 = b[na, en] / b44;
+		t = (a43 * b34 - a33 - a44) * .5;
+		r = t * t + a34 * a43 - a33 * a44;
+		if (r < 0.0) goto L150;
+
+		// Determine single shift zeroth column of a
+		ish = 1;
+		r = Math.Sqrt(r);
+		sh = -t + r;
+		s = -t - r;
+		if (Math.Abs(s - a44) < Math.Abs(sh - a44))
+			sh = s;
+
+		// Look for two consecutive small sub-diagonal elements of a.
+		for (ll = ld; ll + 1 <= enm2; ++ll)
+		{
+			l = enm2 + ld - ll - 1;
+
+			if (l == ld)
+				goto L140;
+
+			lm1 = l - 1;
+			l1 = l + 1;
+			t = a[l + 1, l + 1];
+
+			if (Math.Abs(b[l, l]) > epsb)
+				t -= sh * b[l, l];
+
+			if (Math.Abs(a[l, lm1]) <= (Math.Abs(t / a[l1, l])) * epsa)
+				goto L100;
+		}
+
+	L140:
+		a1 = a11 - sh;
+		a2 = a21;
+		if (l != ld)
+			a[l, lm1] = -a[l, lm1];
+		goto L160;
+
+	// Determine double shift zeroth column of a
+	L150:
+		a12 = a[l, l1] / b22;
+		a22 = a[l1, l1] / b22;
+		b12 = b[l, l1] / b22;
+		a1 = ((a33 - a11) * (a44 - a11) - a34 * a43 + a43 * b34 * a11) / a21 + a12 - a11 * b12;
+		a2 = a22 - a11 - a21 * b12 - (a33 - a11) - (a44 - a11) + a43 * b34;
+		a3 = a[l1 + 1, l1] / b22;
+		goto L160;
+
+	// Ad hoc shift
+	L155:
+		a1 = 0.0;
+		a2 = 1.0;
+		a3 = 1.1605;
+
+	L160:
+		++its;
+		--itn;
+
+		if (!matz) lor1 = ld;
+
+		// Main loop
+		for (k = l; k <= na; ++k)
+		{
+			notlas = k != na && ish == 2;
+			k1 = k + 1;
+			k2 = k + 2;
+
+			km1 = Math.Max(k, l + 1) - 1; // Computing MAX
+			ll = Math.Min(en, k1 + ish);  // Computing MIN
+
+			if (notlas) goto L190;
+
+			// Zero a(k+1,k-1)
+			if (k == l) goto L170;
+			a1 = a[k, km1];
+			a2 = a[k1, km1];
+
+		L170:
+			s = Math.Abs(a1) + Math.Abs(a2);
+			if (s == 0.0) goto L70;
+			u1 = a1 / s;
+			u2 = a2 / s;
+			r = Special.Sign(Math.Sqrt(u1 * u1 + u2 * u2), u1);
+			v1 = -(u1 + r) / r;
+			v2 = -u2 / r;
+			u2 = v2 / v1;
+
+			for (j = km1; j < enorn; ++j)
+			{
+				t = a[k, j] + u2 * a[k1, j];
+				a[k, j] += t * v1;
+				a[k1, j] += t * v2;
+
+				t = b[k, j] + u2 * b[k1, j];
+				b[k, j] += t * v1;
+				b[k1, j] += t * v2;
+			}
+
+			if (k != l)
+				a[k1, km1] = 0.0;
+			goto L240;
+
+			// Zero a(k+1,k-1) and a(k+2,k-1)
+		L190:
+			if (k == l) goto L200;
+			a1 = a[k, km1];
+			a2 = a[k1, km1];
+			a3 = a[k2, km1];
+
+		L200:
+			s = Math.Abs(a1) + Math.Abs(a2) + Math.Abs(a3);
+			if (s == 0.0) goto L260;
+			u1 = a1 / s;
+			u2 = a2 / s;
+			u3 = a3 / s;
+			r = Special.Sign(Math.Sqrt(u1 * u1 + u2 * u2 + u3 * u3), u1);
+			v1 = -(u1 + r) / r;
+			v2 = -u2 / r;
+			v3 = -u3 / r;
+			u2 = v2 / v1;
+			u3 = v3 / v1;
+
+			for (j = km1; j < enorn; ++j)
+			{
+				t = a[k, j] + u2 * a[k1, j] + u3 * a[k2, j];
+				a[k, j] += t * v1;
+				a[k1, j] += t * v2;
+				a[k2, j] += t * v3;
+
+				t = b[k, j] + u2 * b[k1, j] + u3 * b[k2, j];
+				b[k, j] += t * v1;
+				b[k1, j] += t * v2;
+				b[k2, j] += t * v3;
+			}
+
+			if (k == l) goto L220;
+			a[k1, km1] = 0.0;
+			a[k2, km1] = 0.0;
+
+		// Zero b(k+2,k+1) and b(k+2,k)
+		L220:
+			s = (Math.Abs(b[k2, k2])) + (Math.Abs(b[k2, k1])) + (Math.Abs(b[k2, k]));
+			if (s == 0.0) goto L240;
+			u1 = b[k2, k2] / s;
+			u2 = b[k2, k1] / s;
+			u3 = b[k2, k] / s;
+			r = Special.Sign(Math.Sqrt(u1 * u1 + u2 * u2 + u3 * u3), u1);
+			v1 = -(u1 + r) / r;
+			v2 = -u2 / r;
+			v3 = -u3 / r;
+			u2 = v2 / v1;
+			u3 = v3 / v1;
+
+			for (i = lor1; i < ll + 1; ++i)
+			{
+				t = a[i, k2] + u2 * a[i, k1] + u3 * a[i, k];
+				a[i, k2] += t * v1;
+				a[i, k1] += t * v2;
+				a[i, k] += t * v3;
+
+				t = b[i, k2] + u2 * b[i, k1] + u3 * b[i, k];
+				b[i, k2] += t * v1;
+				b[i, k1] += t * v2;
+				b[i, k] += t * v3;
+			}
+
+			b[k2, k] = 0.0;
+			b[k2, k1] = 0.0;
+
+			if (matz)
+			{
+				for (i = 0; i < n; ++i)
+				{
+					t = z[i, k2] + u2 * z[i, k1] + u3 * z[i, k];
+					z[i, k2] += t * v1;
+					z[i, k1] += t * v2;
+					z[i, k] += t * v3;
+				}
+			}
+
+		// Zero b(k+1,k)
+		L240:
+			s = (Math.Abs(b[k1, k1])) + (Math.Abs(b[k1, k]));
+			if (s == 0.0) goto L260;
+			u1 = b[k1, k1] / s;
+			u2 = b[k1, k] / s;
+			r = Special.Sign(Math.Sqrt(u1 * u1 + u2 * u2), u1);
+			v1 = -(u1 + r) / r;
+			v2 = -u2 / r;
+			u2 = v2 / v1;
+
+			for (i = lor1; i < ll + 1; ++i)
+			{
+				t = a[i, k1] + u2 * a[i, k];
+				a[i, k1] += t * v1;
+				a[i, k] += t * v2;
+
+				t = b[i, k1] + u2 * b[i, k];
+				b[i, k1] += t * v1;
+				b[i, k] += t * v2;
+			}
+
+			b[k1, k] = 0.0;
+
+			if (matz)
+			{
+				for (i = 0; i < n; ++i)
+				{
+					t = z[i, k1] + u2 * z[i, k];
+					z[i, k1] += t * v1;
+					z[i, k] += t * v2;
+				}
+			}
+
+		L260:
+			;
+		}
+
+		goto L70; // End QZ step
+
+	// Set error -- all eigenvalues have not converged after 30*n iterations
+	L1000:
+		ierr = en + 1;
+
+	// Save epsb for use by qzval and qzvec
+	L1001:
+		if (n > 1)
+			b[n - 1, 0] = epsb;
+		return 0;
+	}
+
+	/// <summary>
+	///   Adaptation of the original Fortran QZVAL routine from EISPACK.
+	/// </summary>
+	/// <remarks>
+	///   This subroutine is the third step of the qz algorithm
+	///   for solving generalized matrix eigenvalue problems,
+	///   siam j. numer. anal. 10, 241-256(1973) by moler and stewart.
+	///  
+	///   This subroutine accepts a pair of real matrices, one of them
+	///   in quasi-triangular form and the other in upper triangular form.
+	///   it reduces the quasi-triangular matrix further, so that any
+	///   remaining 2-by-2 blocks correspond to pairs of complex
+	///   eigenvalues, and returns quantities whose ratios give the
+	///   generalized eigenvalues.	it is usually preceded by  qzhes
+	///   and  qzit  and may be followed by  qzvec.
+	///  
+	///   For the full documentation, please check the original function.
+	/// </remarks>
+	private static int qzval(int n, double[,] a, double[,] b, double[] alfr, double[] alfi, double[] beta, bool matz, double[,] z)
+	{
+		int i, j;
+		int na, en, nn;
+		double c, d, e = 0;
+		double r, s, t;
+		double a1, a2, u1, u2, v1, v2;
+		double a11, a12, a21, a22;
+		double b11, b12, b22;
+		double di, ei;
+		double an = 0, bn;
+		double cq, dr;
+		double cz, ti, tr;
+		double a1i, a2i, a11i, a12i, a22i, a11r, a12r, a22r;
+		double sqi, ssi, sqr, szi, ssr, szr;
+
+		double epsb = b[n - 1, 0];
+		int isw = 1;
+
+
+		// Find eigenvalues of quasi-triangular matrices.
+		for (nn = 0; nn < n; ++nn)
+		{
+			en = n - nn - 1;
+			na = en - 1;
+
+			if (isw == 2) goto L505;
+			if (en == 0) goto L410;
+			if (a[en, na] != 0.0) goto L420;
+
+		// 1-by-1 block, one real root
+		L410:
+			alfr[en] = a[en, en];
+			if (b[en, en] < 0.0)
+			{
+				alfr[en] = -alfr[en];
+			}
+			beta[en] = (Math.Abs(b[en, en]));
+			alfi[en] = 0.0;
+			goto L510;
+
+		// 2-by-2 block
+		L420:
+			if (Math.Abs(b[na, na]) <= epsb) goto L455;
+			if (Math.Abs(b[en, en]) > epsb) goto L430;
+			a1 = a[en, en];
+			a2 = a[en, na];
+			bn = 0.0;
+			goto L435;
+
+		L430:
+			an = Math.Abs(a[na, na]) + Math.Abs(a[na, en]) + Math.Abs(a[en, na]) + Math.Abs(a[en, en]);
+			bn = Math.Abs(b[na, na]) + Math.Abs(b[na, en]) + Math.Abs(b[en, en]);
+			a11 = a[na, na] / an;
+			a12 = a[na, en] / an;
+			a21 = a[en, na] / an;
+			a22 = a[en, en] / an;
+			b11 = b[na, na] / bn;
+			b12 = b[na, en] / bn;
+			b22 = b[en, en] / bn;
+			e = a11 / b11;
+			ei = a22 / b22;
+			s = a21 / (b11 * b22);
+			t = (a22 - e * b22) / b22;
+
+			if (Math.Abs(e) <= Math.Abs(ei))
+				goto L431;
+
+			e = ei;
+			t = (a11 - e * b11) / b11;
+
+		L431:
+			c = (t - s * b12) * .5;
+			d = c * c + s * (a12 - e * b12);
+			if (d < 0.0) goto L480;
+
+			// Two real roots. Zero both a(en,na) and b(en,na)
+			e += c + Special.Sign(Math.Sqrt(d), c);
+			a11 -= e * b11;
+			a12 -= e * b12;
+			a22 -= e * b22;
+
+			if (Math.Abs(a11) + Math.Abs(a12) < Math.Abs(a21) + Math.Abs(a22))
+				goto L432;
+
+			a1 = a12;
+			a2 = a11;
+			goto L435;
+
+		L432:
+			a1 = a22;
+			a2 = a21;
+
+		// Choose and apply real z
+		L435:
+			s = Math.Abs(a1) + Math.Abs(a2);
+			u1 = a1 / s;
+			u2 = a2 / s;
+			r = Special.Sign(Math.Sqrt(u1 * u1 + u2 * u2), u1);
+			v1 = -(u1 + r) / r;
+			v2 = -u2 / r;
+			u2 = v2 / v1;
+
+			for (i = 0; i <= en; ++i)
+			{
+				t = a[i, en] + u2 * a[i, na];
+				a[i, en] += t * v1;
+				a[i, na] += t * v2;
+
+				t = b[i, en] + u2 * b[i, na];
+				b[i, en] += t * v1;
+				b[i, na] += t * v2;
+			}
+
+			if (matz)
+			{
+				for (i = 0; i < n; ++i)
+				{
+					t = z[i, en] + u2 * z[i, na];
+					z[i, en] += t * v1;
+					z[i, na] += t * v2;
+				}
+			}
+
+			if (bn == 0.0) goto L475;
+			if (an < System.Math.Abs(e) * bn) goto L455;
+			a1 = b[na, na];
+			a2 = b[en, na];
+			goto L460;
+
+		L455:
+			a1 = a[na, na];
+			a2 = a[en, na];
+
+		// Choose and apply real q
+		L460:
+			s = System.Math.Abs(a1) + System.Math.Abs(a2);
+			if (s == 0.0) goto L475;
+			u1 = a1 / s;
+			u2 = a2 / s;
+			r = Special.Sign(Math.Sqrt(u1 * u1 + u2 * u2), u1);
+			v1 = -(u1 + r) / r;
+			v2 = -u2 / r;
+			u2 = v2 / v1;
+
+			for (j = na; j < n; ++j)
+			{
+				t = a[na, j] + u2 * a[en, j];
+				a[na, j] += t * v1;
+				a[en, j] += t * v2;
+
+				t = b[na, j] + u2 * b[en, j];
+				b[na, j] += t * v1;
+				b[en, j] += t * v2;
+			}
+
+		L475:
+			a[en, na] = 0.0;
+			b[en, na] = 0.0;
+			alfr[na] = a[na, na];
+			alfr[en] = a[en, en];
+
+			if (b[na, na] < 0.0)
+				alfr[na] = -alfr[na];
+
+			if (b[en, en] < 0.0)
+				alfr[en] = -alfr[en];
+
+			beta[na] = (System.Math.Abs(b[na, na]));
+			beta[en] = (System.Math.Abs(b[en, en]));
+			alfi[en] = 0.0;
+			alfi[na] = 0.0;
+			goto L505;
+
+			// Two complex roots
+		L480:
+			e += c;
+			ei = System.Math.Sqrt(-d);
+			a11r = a11 - e * b11;
+			a11i = ei * b11;
+			a12r = a12 - e * b12;
+			a12i = ei * b12;
+			a22r = a22 - e * b22;
+			a22i = ei * b22;
+
+			if (System.Math.Abs(a11r) + System.Math.Abs(a11i) +
+				System.Math.Abs(a12r) + System.Math.Abs(a12i) <
+				System.Math.Abs(a21) + System.Math.Abs(a22r)
+				+ System.Math.Abs(a22i))
+				goto L482;
+
+			a1 = a12r;
+			a1i = a12i;
+			a2 = -a11r;
+			a2i = -a11i;
+			goto L485;
+
+		L482:
+			a1 = a22r;
+			a1i = a22i;
+			a2 = -a21;
+			a2i = 0.0;
+
+		// Choose complex z
+		L485:
+			cz = System.Math.Sqrt(a1 * a1 + a1i * a1i);
+			if (cz == 0.0) goto L487;
+			szr = (a1 * a2 + a1i * a2i) / cz;
+			szi = (a1 * a2i - a1i * a2) / cz;
+			r = System.Math.Sqrt(cz * cz + szr * szr + szi * szi);
+			cz /= r;
+			szr /= r;
+			szi /= r;
+			goto L490;
+
+		L487:
+			szr = 1.0;
+			szi = 0.0;
+
+		L490:
+			if (an < (System.Math.Abs(e) + ei) * bn) goto L492;
+			a1 = cz * b11 + szr * b12;
+			a1i = szi * b12;
+			a2 = szr * b22;
+			a2i = szi * b22;
+			goto L495;
+
+		L492:
+			a1 = cz * a11 + szr * a12;
+			a1i = szi * a12;
+			a2 = cz * a21 + szr * a22;
+			a2i = szi * a22;
+
+		// Choose complex q
+		L495:
+			cq = System.Math.Sqrt(a1 * a1 + a1i * a1i);
+			if (cq == 0.0) goto L497;
+			sqr = (a1 * a2 + a1i * a2i) / cq;
+			sqi = (a1 * a2i - a1i * a2) / cq;
+			r = System.Math.Sqrt(cq * cq + sqr * sqr + sqi * sqi);
+			cq /= r;
+			sqr /= r;
+			sqi /= r;
+			goto L500;
+
+		L497:
+			sqr = 1.0;
+			sqi = 0.0;
+
+		// Compute diagonal elements that would result if transformations were applied
+		L500:
+			ssr = sqr * szr + sqi * szi;
+			ssi = sqr * szi - sqi * szr;
+			i = 0;
+			tr = cq * cz * a11 + cq * szr * a12 + sqr * cz * a21 + ssr * a22;
+			ti = cq * szi * a12 - sqi * cz * a21 + ssi * a22;
+			dr = cq * cz * b11 + cq * szr * b12 + ssr * b22;
+			di = cq * szi * b12 + ssi * b22;
+			goto L503;
+
+		L502:
+			i = 1;
+			tr = ssr * a11 - sqr * cz * a12 - cq * szr * a21 + cq * cz * a22;
+			ti = -ssi * a11 - sqi * cz * a12 + cq * szi * a21;
+			dr = ssr * b11 - sqr * cz * b12 + cq * cz * b22;
+			di = -ssi * b11 - sqi * cz * b12;
+
+		L503:
+			t = ti * dr - tr * di;
+			j = na;
+
+			if (t < 0.0)
+				j = en;
+
+			r = Math.Sqrt(dr * dr + di * di);
+			beta[j] = bn * r;
+			alfr[j] = an * (tr * dr + ti * di) / r;
+			alfi[j] = an * t / r;
+			if (i == 0) goto L502;
+
+		L505:
+			isw = 3 - isw;
+
+		L510:
+			;
+		}
+
+		b[n - 1, 0] = epsb;
+
+		return 0;
+	}
+
+	/// <summary>
+	///   Adaptation of the original Fortran QZVEC routine from EISPACK.
+	/// </summary>
+	/// <remarks>
+	///   This subroutine is the optional fourth step of the qz algorithm
+	///   for solving generalized matrix eigenvalue problems,
+	///   siam j. numer. anal. 10, 241-256(1973) by moler and stewart.
+	///  
+	///   This subroutine accepts a pair of real matrices, one of them in
+	///   quasi-triangular form (in which each 2-by-2 block corresponds to
+	///   a pair of complex eigenvalues) and the other in upper triangular
+	///   form.  It computes the eigenvectors of the triangular problem and
+	///   transforms the results back to the original coordinate system.
+	///   it is usually preceded by  qzhes,  qzit, and	qzval.
+	///  
+	///   For the full documentation, please check the original function.
+	/// </remarks>
+	private static int qzvec(int n, double[,] a, double[,] b, double[] alfr, double[] alfi, double[] beta, double[,] z)
+	{
+		int i, j, k, m;
+		int na, ii, en, jj, nn, enm2;
+		double d, q;
+		double r = 0, s = 0, t, w, x = 0, y, t1, t2, w1, x1 = 0, z1 = 0, di;
+		double ra, dr, sa;
+		double ti, rr, tr, zz = 0;
+		double alfm, almi, betm, almr;
+
+		double epsb = b[n - 1, 0];
+		int isw = 1;
+
+
+		// for en=n step -1 until 1 do --
+		for (nn = 0; nn < n; ++nn)
+		{
+			en = n - nn - 1;
+			na = en - 1;
+			if (isw == 2) goto L795;
+			if (alfi[en] != 0.0) goto L710;
+
+			// Real vector
+			m = en;
+			b[en, en] = 1.0;
+			if (na == -1) goto L800;
+			alfm = alfr[m];
+			betm = beta[m];
+
+			// for i=en-1 step -1 until 1 do --
+			for (ii = 0; ii <= na; ++ii)
+			{
+				i = en - ii - 1;
+				w = betm * a[i, i] - alfm * b[i, i];
+				r = 0.0;
+
+				for (j = m; j <= en; ++j)
+					r += (betm * a[i, j] - alfm * b[i, j]) * b[j, en];
+
+				if (i == 0 || isw == 2)
+					goto L630;
+
+				if (betm * a[i, i - 1] == 0.0)
+					goto L630;
+
+				zz = w;
+				s = r;
+				goto L690;
+
+			L630:
+				m = i;
+				if (isw == 2) goto L640;
+
+				// Real 1-by-1 block
+				t = w;
+				if (w == 0.0)
+					t = epsb;
+				b[i, en] = -r / t;
+				goto L700;
+
+			// Real 2-by-2 block
+			L640:
+				x = betm * a[i, i + 1] - alfm * b[i, i + 1];
+				y = betm * a[i + 1, i];
+				q = w * zz - x * y;
+				t = (x * s - zz * r) / q;
+				b[i, en] = t;
+				if (Math.Abs(x) <= Math.Abs(zz)) goto L650;
+				b[i + 1, en] = (-r - w * t) / x;
+				goto L690;
+
+			L650:
+				b[i + 1, en] = (-s - y * t) / zz;
+
+			L690:
+				isw = 3 - isw;
+
+			L700:
+				;
+			}
+			// End real vector
+			goto L800;
+
+		// Complex vector
+		L710:
+			m = na;
+			almr = alfr[m];
+			almi = alfi[m];
+			betm = beta[m];
+
+			// last vector component chosen imaginary so that eigenvector matrix is triangular
+			y = betm * a[en, na];
+			b[na, na] = -almi * b[en, en] / y;
+			b[na, en] = (almr * b[en, en] - betm * a[en, en]) / y;
+			b[en, na] = 0.0;
+			b[en, en] = 1.0;
+			enm2 = na;
+			if (enm2 == 0) goto L795;
+
+			// for i=en-2 step -1 until 1 do --
+			for (ii = 0; ii < enm2; ++ii)
+			{
+				i = na - ii - 1;
+				w = betm * a[i, i] - almr * b[i, i];
+				w1 = -almi * b[i, i];
+				ra = 0.0;
+				sa = 0.0;
+
+				for (j = m; j <= en; ++j)
+				{
+					x = betm * a[i, j] - almr * b[i, j];
+					x1 = -almi * b[i, j];
+					ra = ra + x * b[j, na] - x1 * b[j, en];
+					sa = sa + x * b[j, en] + x1 * b[j, na];
+				}
+
+				if (i == 0 || isw == 2) goto L770;
+				if (betm * a[i, i - 1] == 0.0) goto L770;
+
+				zz = w;
+				z1 = w1;
+				r = ra;
+				s = sa;
+				isw = 2;
+				goto L790;
+
+			L770:
+				m = i;
+				if (isw == 2) goto L780;
+
+				// Complex 1-by-1 block
+				tr = -ra;
+				ti = -sa;
+
+			L773:
+				dr = w;
+				di = w1;
+
+				// Complex divide (t1,t2) = (tr,ti) / (dr,di)
+			L775:
+				if (Math.Abs(di) > Math.Abs(dr)) goto L777;
+				rr = di / dr;
+				d = dr + di * rr;
+				t1 = (tr + ti * rr) / d;
+				t2 = (ti - tr * rr) / d;
+
+				switch (isw)
+				{
+					case 1: goto L787;
+					case 2: goto L782;
+				}
+
+			L777:
+				rr = dr / di;
+				d = dr * rr + di;
+				t1 = (tr * rr + ti) / d;
+				t2 = (ti * rr - tr) / d;
+				switch (isw)
+				{
+					case 1: goto L787;
+					case 2: goto L782;
+				}
+
+			   // Complex 2-by-2 block
+			L780:
+				x = betm * a[i, i + 1] - almr * b[i, i + 1];
+				x1 = -almi * b[i, i + 1];
+				y = betm * a[i + 1, i];
+				tr = y * ra - w * r + w1 * s;
+				ti = y * sa - w * s - w1 * r;
+				dr = w * zz - w1 * z1 - x * y;
+				di = w * z1 + w1 * zz - x1 * y;
+				if (dr == 0.0 && di == 0.0)
+					dr = epsb;
+				goto L775;
+
+			L782:
+				b[i + 1, na] = t1;
+				b[i + 1, en] = t2;
+				isw = 1;
+				if (Math.Abs(y) > Math.Abs(w) + Math.Abs(w1))
+					goto L785;
+				tr = -ra - x * b[(i + 1), na] + x1 * b[(i + 1), en];
+				ti = -sa - x * b[(i + 1), en] - x1 * b[(i + 1), na];
+				goto L773;
+
+			L785:
+				t1 = (-r - zz * b[(i + 1), na] + z1 * b[(i + 1), en]) / y;
+				t2 = (-s - zz * b[(i + 1), en] - z1 * b[(i + 1), na]) / y;
+
+			L787:
+				b[i, na] = t1;
+				b[i, en] = t2;
+
+			L790:
+				;
+			}
+
+			// End complex vector
+		L795:
+			isw = 3 - isw;
+
+		L800:
+			;
+		}
+
+		// End back substitution. Transform to original coordinate system.
+		for (jj = 0; jj < n; ++jj)
+		{
+			j = n - jj - 1;
+
+			for (i = 0; i < n; ++i)
+			{
+				zz = 0.0;
+				for (k = 0; k <= j; ++k)
+					zz += z[i, k] * b[k, j];
+				z[i, j] = zz;
+			}
+		}
+
+		// Normalize so that modulus of largest component of each vector is 1.
+		// (isw is 1 initially from before)
+		for (j = 0; j < n; ++j)
+		{
+			d = 0.0;
+			if (isw == 2) goto L920;
+			if (alfi[j] != 0.0) goto L945;
+
+			for (i = 0; i < n; ++i)
+			{
+				if ((Math.Abs(z[i, j])) > d)
+					d = (Math.Abs(z[i, j]));
+			}
+
+			for (i = 0; i < n; ++i)
+				z[i, j] /= d;
+
+			goto L950;
+
+		L920:
+			for (i = 0; i < n; ++i)
+			{
+				r = System.Math.Abs(z[i, j - 1]) + System.Math.Abs(z[i, j]);
+				if (r != 0.0)
+				{
+					// Computing 2nd power
+					double u1 = z[i, j - 1] / r;
+					double u2 = z[i, j] / r;
+					r *= Math.Sqrt(u1 * u1 + u2 * u2);
+				}
+				if (r > d)
+					d = r;
+			}
+
+			for (i = 0; i < n; ++i)
+			{
+				z[i, j - 1] /= d;
+				z[i, j] /= d;
+			}
+
+		L945:
+			isw = 3 - isw;
+
+		L950:
+			;
+		}
+
+		return 0;
+	}
+
+	#endregion
+
+
+
+	#region ICloneable Members
+
+	private GeneralizedEigenvalueDecomposition()
+	{
+	}
+
+	/// <summary>
+	///   Creates a new object that is a copy of the current instance.
+	/// </summary>
+	/// <returns>
+	///   A new object that is a copy of this instance.
+	/// </returns>
+	public object Clone()
+	{
+		var clone = new GeneralizedEigenvalueDecomposition();
+		clone.ai = (double[])ai.Clone();
+		clone.ar = (double[])ar.Clone();
+		clone.beta = (double[])beta.Clone();
+		clone.n = n;
+		clone.Z = (double[,])Z.Clone();
+		return clone;
+	}
+
+	#endregion
+
+}
+