LADCPintsh
author A.M. Thurnherr <athurnherr@yahoo.com>
Fri, 06 Mar 2015 15:54:23 -0500
changeset 33 dd5b67a41791
parent 30 8697ba5a88ec
parent 29 f72cd642972c
child 35 3d769eee8c4f
permissions -rwxr-xr-x
merged Explorer with DoMORE-1 changes

#!/usr/bin/perl
#======================================================================
#                    L A D C P I N T S H 
#                    doc: Thu Oct 14 21:22:50 2010
#                    dlm: Fri Mar  6 15:51:49 2015
#                    (c) 2010 A.M. Thurnherr & E. Firing
#                    uE-Info: 8 0 NIL 0 0 72 0 2 4 NIL ofnI
#======================================================================

$antsSummary = 'integrate LADCP shear';

# NOTES:
#	- the core of this code is a simplified version of avg_sh.m and
#	  int_sh.m written by Eric Firing
#	- comments beginning with ## are taken from Eric's code
#	- cubic velocity interpolation across PPI gap from Eric's code has
#	  not been implemented (yet?)
#	- low-pass-filtered shear code has not yet been implemented
#	- currently, shear gaps are assumed to have vanishing shear;
#	  better solutions are possible
#	- elapsed time is simply copied from shear elapsed time (i.e.
#	  it is not interpolated onto the new depth grid)

# WEIRDNESSES IN Eric's CODE:
#	- in Eric's [avg_sh.m] the calculation of output shear stddev incorrectly assumes that the 4th column
#	  in the shear profile is stddev, rather than variance. However, as far as I can tell, this output
#	  is not used anywhere in Eric's code

# HISTORY:
#	Oct 14, 2010: - created
#	Oct 20, 2010: - first working version
#	Oct 23, 2010: - added support for -b)
#	Oct 24, 2010: - fix spuriously small variances that can occur for BT velocities based on very small
#					samples (i.e. primarily when chosing a small -r)
#	Dec  9, 2010: - allowed for empty BT file
#	Feb 16, 2011: - BUG: gaps in shear data were not handled correctly in baroclinic solution
#	Jul  7, 2011: - added -m
#	Jul 19, 2011: - added shear sigma output for shear inversion
#				  - BUG: dc/uc v component was not correctly referenced
#	Jul 24, 2011: - BUG: BT constraint was erroneously assumed to be available for dc,uc only, if it
#						 was available for <dc,uc> combo profile
#	Jul 25, 2011: - BUG: nan in either of ul/dl u_z.sig caused combined u_z.sig to be nan, too
#	Jul 27, 2011: - removed code related to smoothed shear
#				  - replaced -r by -n
#				  - removed shear sigma output
#				  - replaced ndata by nsamp
#				  - removed -w (Eric's way of dealing with dc/uc temporal variability)
#	Feb 19, 2012: - added processing of elapsed time
#				  - adapted to new shear file layout (nsamp instead of nshear)
#				  - BUG: uplooker data was not used for downcasts and and only partially for combo data
#   May 16, 2012: - adapted to ANTSlib V5.0
#	May 25, 2012: - added code to read LDEO_IX bottom-track data
#	Jun 14, 2012: - noticed that -b now works also with LDEO SADCP files :-); renamed -b option to -r
#	Jun  5, 2013: - BUG: code bombed when either UC or DC was missing
#	Jun 28, 2013: - adapated to new :: convention
#				  - make sure LADCP DUL metadata are dealt with correctly
#	Jul 12, 2013: - clarified -u usage with better messages
#	Mar 20, 2014: - fiddled while debugging [LADCPproc]
#	Jun  7, 2014: - improved error messages

($ANTS) = (`which ANTSlib` =~ m{^(.*)/[^/]*$});
require "$ANTS/ants.pl";
require "$ANTS/libstats.pl";

&antsUsage('dm:n:r:s:w:u:',0,
	'[-d)ebug]',
	'[-r)eference with <BT or SADCP file> [-m)in <samp[10]>]]',
	'[secondary -u)plooker <shear file>]',
	'[min -n) <shear samp[10]>]',
	'[output -s)hear-pro <file>]',
	'[LADCP shear file]');

croak("$0: -m meaningless without -r\n")
	if defined($opt_m) && !defined($opt_r);

&antsCardOpt(\$opt_n,10);				# minimum number of samples for shear
$minBTsamp = &antsCardOpt($opt_m,10);	# minimum number of samples for BT data

&antsFileOpt($opt_r);		# reference velocity file

&antsFileOpt($opt_u);		# UL shear file
if (defined($opt_u)) {
	open(ULF,$opt_u) || croak("$opt_u: $!\n");
	%UL_P = &antsFileParams(ULF);
}

#======================================================================
# Step 1: Read and Average Shear Data
#	- depth bins with less than $opt_n values are blanked out
#======================================================================

sub wavg_sig(@)
{
	my($sumSq) = my($n) = 0;
	for (my($i)=0; $i<$#_; $i+=2) {
		next unless numberp($_[$i+1]);
		$sumSq += $_[$i] * $_[$i+1]**2;
		$n += $_[$i];
	}
	return ($n>0) ? sqrt($sumSq/$n) : nan;
}
	

#--------------------
# Handle Metadata
#--------------------

if (%UL_P) {
	croak("$0: inconsistent vertical resolution\n")
		unless ($P{LADCPproc::vertical_resolution} == $UL_P{LADCPproc::vertical_resolution});

	unless ($P{LADCPproc::bin_length} == $UL_P{LADCPproc::bin_length}) {
		&antsInfo("Warnining: different DL/UL bin lengths; derived spectra cannot be corrected");
		&antsAddParams('LADCPproc::bin_length','',
					   'LADCPproc::DL_bin_length',$P{LADCPproc::bin_length},
					   'LADCPproc::UL_bin_length',$UL_P{LADCPproc::bin_length});
	}
}

$depthF = fnrNoErr('depth');									# layout of [LADCPproc] output
unless (defined($depthF)) {
	if (defined($opt_u)) {
		croak("No 'depth' field in primary shear file (extraneous -u?)\n");
	} else {
		croak("No 'depth' field in primary shear file\n");
	}
}

$dc_nshF = fnrNoErr('dc_nshear');
$dc_nshF = fnr('dc_nsamp') unless defined($dc_nshF);
$dc_uzF  = fnr('dc_u_z');
$dc_uzsF = fnrNoErr('dc_u_z.sig');
$dc_uzsF = fnr('dc_u_z_sig') unless defined($dc_uzsF);
$dc_vzF  = fnr('dc_v_z');
$dc_vzsF = fnrNoErr('dc_v_z.sig');
$dc_vzsF = fnr('dc_v_z_sig') unless defined($dc_vzsF);
$dc_wzF  = fnr('dc_w_z');
$dc_wzsF = fnrNoErr('dc_w_z.sig');
$dc_wzsF = fnr('dc_w_z_sig') unless defined($dc_wzsF);
$dc_elapsedF = fnr('dc_elapsed');
$uc_nshF = fnrNoErr('uc_nshear');
$uc_nshF = fnr('uc_nsamp') unless defined($uc_nshF);
$uc_uzF  = fnr('uc_u_z');
$uc_uzsF = fnrNoErr('uc_u_z.sig');
$uc_uzsF = fnr('uc_u_z_sig') unless defined($uc_uzsF);
$uc_vzF  = fnr('uc_v_z');
$uc_vzsF = fnrNoErr('uc_v_z.sig');
$uc_vzsF = fnr('uc_v_z_sig') unless defined($uc_vzsF);
$uc_wzF  = fnr('uc_w_z');
$uc_wzsF = fnrNoErr('uc_w_z.sig');
$uc_wzsF = fnr('uc_w_z_sig') unless defined($uc_wzsF);
$uc_elapsedF = fnr('uc_elapsed');

my(@gaps); my($curGap) = 0;

for (my($r)=0; &antsIn(); $r++) {
	my(@UL_);
	if (defined($opt_u)) {
		@UL_ = &antsFileIn(ULF);							# read UL shear data
		undef($opt_u) unless (@UL_);						# cheap trick
	}

	$depth[$r] = $ants_[0][$depthF];						## depth grid values
	croak("$opt_u: inconsistent depth record $r (DL: $depth[$r]; UL: $UL_[$depthF])\n")
		if defined($opt_u) && ($UL_[$depthF] != $depth[$r]);
		
	$dc_nsamp = $ants_[0][$dc_nshF];						# number of shear samples
	$uc_nsamp = $ants_[0][$uc_nshF];
	if (defined($opt_u)) {
		$dl_nsamp = $dc_nsamp + $uc_nsamp;
		$dc_nsamp += $UL_[$dc_nshF];
		$uc_nsamp += $UL_[$uc_nshF];
		$ul_nsamp = $dc_nsamp + $uc_nsamp;
	}
	
	$dc_nsamp[$r] = $dc_nsamp;								# save for each record
	$uc_nsamp[$r] = $uc_nsamp;
	$nsamp[$r] = $dc_nsamp + $uc_nsamp;
	if (defined($opt_u)) {
		$ul_nsamp[$r] = $ul_nsamp;
		$dl_nsamp[$r] = $dl_nsamp;
	}

	if (defined($opt_u)) {									# dual-head instrument
		if ($dc_nsamp > 0) {								# downcast shear
			my($DLf) = $ants_[0][$dc_nshF] / $dc_nsamp;
			my($ULf) =      $UL_[$dc_nshF] / $dc_nsamp;
			if ($DLf>0 && $ULf>0) {
				$dc_uz[$r] = $DLf*$ants_[0][$dc_uzF] + $ULf*$UL_[$dc_uzF];
				$dc_vz[$r] = $DLf*$ants_[0][$dc_vzF] + $ULf*$UL_[$dc_vzF];
	            $dc_wz[$r] = $DLf*$ants_[0][$dc_wzF] + $ULf*$UL_[$dc_wzF];
	            $dc_elapsed[$r] = $DLf*$ants_[0][$dc_elapsedF] + $ULf*$UL_[$dc_elapsedF];
	        } elsif ($DLf > 0) {
				$dc_uz[$r] = $ants_[0][$dc_uzF];
				$dc_vz[$r] = $ants_[0][$dc_vzF];
				$dc_wz[$r] = $ants_[0][$dc_wzF];
				$dc_elapsed[$r] = $ants_[0][$dc_elapsedF];
	        } else {
				$dc_uz[$r] = $UL_[$dc_uzF];
				$dc_vz[$r] = $UL_[$dc_vzF];
				$dc_wz[$r] = $UL_[$dc_wzF];
				$dc_elapsed[$r] = $UL_[$dc_elapsedF];
	        }
		} else {
			$dc_uz[$r] = $dc_vz[$r] = $dc_wz[$r] = $dc_elapsed[$r] = nan;
	    }
		if ($uc_nsamp > 0) {								# upcast shear
			my($DLf) = $ants_[0][$uc_nshF] / $uc_nsamp;
			my($ULf) =      $UL_[$uc_nshF] / $uc_nsamp;
			if ($DLf>0 && $Ulf>0) {
				$uc_uz[$r] = $DLf*$ants_[0][$uc_uzF] + $ULf*$UL_[$uc_uzF];
				$uc_vz[$r] = $DLf*$ants_[0][$uc_vzF] + $ULf*$UL_[$uc_vzF];
				$uc_wz[$r] = $DLf*$ants_[0][$uc_wzF] + $ULf*$UL_[$uc_wzF];
				$uc_elapsed[$r] = $DLf*$ants_[0][$uc_elapsedF] + $ULf*$UL_[$uc_elapsedF];
	        } elsif ($DLf > 0) {
				$uc_uz[$r] = $ants_[0][$uc_uzF];
				$uc_vz[$r] = $ants_[0][$uc_vzF];
				$uc_wz[$r] = $ants_[0][$uc_wzF];
				$uc_elapsed[$r] = $ants_[0][$uc_elapsedF];
	        } else {
				$uc_uz[$r] = $UL_[$uc_uzF];
				$uc_vz[$r] = $UL_[$uc_vzF];
				$uc_wz[$r] = $UL_[$uc_wzF];
				$uc_elapsed[$r] = $UL_[$uc_elapsedF];
	        }
		} else {
			$uc_uz[$r] = $uc_vz[$r] = $uc_wz[$r] = $uc_elapsed[$r] = nan;
	    }
	} else {	# downlooker only
		if ($dc_nsamp > 0) {							# downcast shear
			$dc_uz[$r] = $ants_[0][$dc_uzF];
			$dc_vz[$r] = $ants_[0][$dc_vzF];
			$dc_wz[$r] = $ants_[0][$dc_wzF];
			$dc_elapsed[$r] = $ants_[0][$dc_elapsedF];
		} else {
			$dc_uz[$r] = $dc_vz[$r] = $dc_wz[$r] = $dc_elapsed[$r] = nan;
	    }
		if ($uc_nsamp > 0) {							# upcast shear
			$uc_uz[$r] = $ants_[0][$uc_uzF];
			$uc_vz[$r] = $ants_[0][$uc_vzF];
			$uc_wz[$r] = $ants_[0][$uc_wzF];
			$uc_elapsed[$r] = $ants_[0][$uc_elapsedF];
		} else {
			$uc_uz[$r] = $uc_vz[$r] = $uc_wz[$r] = $uc_elapsed[$r] = nan;
	    }
    }
    
	if ($nsamp[$r] > 0) {
		my($dcf) = $dc_nsamp / $nsamp[$r];
		my($ucf) = $uc_nsamp / $nsamp[$r];
		if ($dcf>0 && $ucf>0) {
			$uz[$r] = $dcf*$dc_uz[$r] + $ucf*$uc_uz[$r];
			$vz[$r] = $dcf*$dc_vz[$r] + $ucf*$uc_vz[$r];
            $wz[$r] = $dcf*$dc_wz[$r] + $ucf*$uc_wz[$r];
            $elapsed[$r] = $dcf*$dc_elapsed[$r] + $ucf*$uc_elapsed[$r];
        } elsif ($dcf > 0) {
			$uz[$r] = $dc_uz[$r];
			$vz[$r] = $dc_vz[$r];
			$wz[$r] = $dc_wz[$r];
			$elapsed[$r] = $dc_elapsed[$r];
        } else {
			$uz[$r] = $uc_uz[$r];
			$vz[$r] = $uc_vz[$r];
			$wz[$r] = $uc_wz[$r];
			$elapsed[$r] = $uc_elapsed[$r];
        }
	} else {
		$uz[$r] = $vz[$r] = $wz[$r] = $elapsed[$r] = nan;
	}

	if (numberp($uz[$r]) && $curGap>0) {						# end of gap
		push(@gaps,$curGap)	unless ($r == $curGap);				# do not report "gap" at beginning of profile
#		print(STDERR "$curGap-gap at $depth[$r]m\n");
		$curGap = 0;
    } elsif (!numberp($uz[$r])) {								# currently in gap
#    	print(STDERR "in gap at $depth[$r]m (nsamp = $nsamp[$r], $dc_nsamp,$uc_nsamp)\n");
		$curGap++;
    }
	
	if ($nsamp[$r] > 0) {
		if (defined($opt_u)) {
			$uzsig[$r] = wavg_sig($ants_[0][$dc_nshF],$ants_[0][$dc_uzsF],
							           $UL_[$dc_nshF],     $UL_[$dc_uzsF],
							      $ants_[0][$uc_nshF],$ants_[0][$uc_uzsF],
							           $UL_[$uc_nshF],     $UL_[$uc_uzsF]);
			$vzsig[$r] = wavg_sig($ants_[0][$dc_nshF],$ants_[0][$dc_vzsF],
									   $UL_[$dc_nshF],     $UL_[$dc_vzsF],
							      $ants_[0][$uc_nshF],$ants_[0][$uc_vzsF],
									   $UL_[$uc_nshF],     $UL_[$uc_vzsF]);
			$wzsig[$r] = wavg_sig($ants_[0][$dc_nshF],$ants_[0][$dc_wzsF],
									   $UL_[$dc_nshF],     $UL_[$dc_wzsF],
							      $ants_[0][$uc_nshF],$ants_[0][$uc_wzsF],
	                                   $UL_[$uc_nshF],     $UL_[$uc_wzsF]);
		} else { # DL only
			$uzsig[$r] = wavg_sig($ants_[0][$dc_nshF],$ants_[0][$dc_uzsF],
							      $ants_[0][$uc_nshF],$ants_[0][$uc_uzsF]);
			$vzsig[$r] = wavg_sig($ants_[0][$dc_nshF],$ants_[0][$dc_vzsF],
							      $ants_[0][$uc_nshF],$ants_[0][$uc_vzsF]);
			$wzsig[$r] = wavg_sig($ants_[0][$dc_nshF],$ants_[0][$dc_wzsF],
	                              $ants_[0][$uc_nshF],$ants_[0][$uc_wzsF]);
	    }
	} else {
		$uzsig[$r] = $vzsig[$r] = $wzsig[$r] = nan;
	}

	if ($dc_nsamp > 0) {									# same calc for downcast only
		if (defined($opt_u)) {
			$dc_uzsig[$r] = wavg_sig($ants_[0][$dc_nshF],$ants_[0][$dc_uzsF],
							              $UL_[$dc_nshF],     $UL_[$dc_uzsF]);
			$dc_vzsig[$r] = wavg_sig($ants_[0][$dc_nshF],$ants_[0][$dc_vzsF],
							              $UL_[$dc_nshF],     $UL_[$dc_vzsF]);
			$dc_wzsig[$r] = wavg_sig($ants_[0][$dc_nshF],$ants_[0][$dc_wzsF],
							              $UL_[$dc_nshF],     $UL_[$dc_wzsF]);
		} else {
			$dc_uzsig[$r] = $ants_[0][$dc_uzsF];
			$dc_vzsig[$r] = $ants_[0][$dc_vzsF];
			$dc_wzsig[$r] = $ants_[0][$dc_wzsF];
	    }
	} else {
		$uzsig[$r] = $vzsig[$r] = $wzsig[$r] = nan;
	}

	if ($uc_nsamp > 0) {									# same calc for upcast only
		if (defined($opt_u)) {
			$uc_uzsig[$r] = wavg_sig($ants_[0][$uc_nshF],$ants_[0][$uc_uzsF],
							              $UL_[$uc_nshF],     $UL_[$uc_uzsF]);
			$uc_vzsig[$r] = wavg_sig($ants_[0][$uc_nshF],$ants_[0][$uc_vzsF],
							              $UL_[$uc_nshF],     $UL_[$uc_vzsF]);
			$uc_wzsig[$r] = wavg_sig($ants_[0][$uc_nshF],$ants_[0][$uc_wzsF],
							              $UL_[$uc_nshF],     $UL_[$uc_wzsF]);
		} else {
			$uc_uzsig[$r] = $ants_[0][$uc_uzsF];
			$uc_vzsig[$r] = $ants_[0][$uc_vzsF];
			$uc_wzsig[$r] = $ants_[0][$uc_wzsF];
	    }
	} else {
		$uzsig[$r] = $vzsig[$r] = $wzsig[$r] = nan;
	}
}

if (@gaps) {
	&antsAddParams('shear_gaps',"@gaps");
	print(STDERR "shear gaps: @gaps\n");
} else {
	&antsAddParams('shear_gaps',0);
}
	
#===============================================================================
# Step 2: Low-Pass filter high-quality shear data; not yet implemented
#===============================================================================

#======================================================================
# Step 3: Integrate Shear
#	- z(vel) = z(sh) + DZ/2
#======================================================================

my($DZ) = $depth[1] - $depth[0];

for (my($r)=my($u)=my($v)=my($w)=my($dc_u)=my($dc_v)=my($dc_w)=my($uc_u)=my($uc_v)=my($uc_w)=0;
	 $r<@depth; $r++) {
	if ($nsamp[$r] >= $opt_n) {
		$u = $u[$r] = $u + $DZ*$uz[$r];
		$v = $v[$r] = $v + $DZ*$vz[$r];
		$w = $w[$r] = $w + $DZ*$wz[$r];
	}
	if ($dc_nsamp[$r] >= $opt_n) {
		$dc_u = $dc_u[$r] = $dc_u + $DZ*$dc_uz[$r];
		$dc_v = $dc_v[$r] = $dc_v + $DZ*$dc_vz[$r];
		$dc_w = $dc_w[$r] = $dc_w + $DZ*$dc_wz[$r];
	}
	if ($uc_nsamp[$r] >= $opt_n) {
		$uc_u = $uc_u[$r] = $uc_u + $DZ*$uc_uz[$r];
		$uc_v = $uc_v[$r] = $uc_v + $DZ*$uc_vz[$r];
		$uc_w = $uc_w[$r] = $uc_w + $DZ*$uc_wz[$r];
	}
}

#======================================================================
# Step 4: Reference Velocities
#======================================================================

my($refU,$refV,$refW,$dc_refU,$dc_refV,$dc_refW,$uc_refU,$uc_refV,$uc_refW);

if (defined($opt_r)) {											# reference using velocity profile
	print(STDERR "Loading reference-velocity data from $opt_r...\n")
		if ($opt_d);
	open(BTF,$opt_r) || croak("$opt_r: $!\n");

	my(@BTL) = &antsFileLayout(BTF);
	if (@BTL) {													# valid ANTS file
		my($BTdF,$BTndF,$BTuF,$BTvF,$BTwF,$BTusF,$BTvsF,$BTwsF);
		for (my($f)=0; $f<@BTL; $f++) {
			$BTdF = $f if ($BTL[$f] eq 'depth');
			$BTuF = $f if ($BTL[$f] eq 'u');
			$BTvF = $f if ($BTL[$f] eq 'v');
			$BTwF = $f if ($BTL[$f] eq 'w');
			$BTusF = $f if ($BTL[$f] eq 'u.sig');
			$BTvsF = $f if ($BTL[$f] eq 'v.sig');
			$BTwsF = $f if ($BTL[$f] eq 'w.sig');
			$BTndF = $f if ($BTL[$f] eq 'nsamp');
			$BTerrF= $f if ($BTL[$f] eq 'err');
		}

		if (defined($BTdF) && defined($BTuF) &&					# from LADCPproc
		    defined($BTvF) && defined($BTwF) &&
		    defined($BTusF) && defined($BTvsF) &&
			defined($BTwsF) && defined($BTndF)) {	
			while (my(@BTr) = &antsFileIn(BTF)) {
				my($gi) = int($BTr[$BTdF] / $DZ);
				next unless ($BTr[$BTndF] >= $minBTsamp);
				$BT_nsamp[$gi] = $BTr[$BTndF];
				$BT_u[$gi] = $BTr[$BTuF];
				$BT_v[$gi] = $BTr[$BTvF];
				$BT_w[$gi] = $BTr[$BTwF];
				$BT_u_var[$gi] = $BTr[$BTusF]**2;
				$BT_v_var[$gi] = $BTr[$BTvsF]**2;
				$BT_w_var[$gi] = $BTr[$BTwsF]**2;
			}
			&fixLowSampStat(\@BT_u_var,@BT_nsamp);				# remove spurious small variances
			&fixLowSampStat(\@BT_v_var,@BT_nsamp);
	        &fixLowSampStat(\@BT_w_var,@BT_nsamp);
        } elsif (defined($BTdF) && defined($BTuF) &&			# LDEO_IX ANTS format
				 defined($BTvF) && defined($BTerrF)) {
			croak("$0: -m not supported for LDEO_IX output\n")
				if defined($opt_m);
			while (my(@BTr) = &antsFileIn(BTF)) {
				my($gi) = int($BTr[$BTdF] / $DZ);
				$BT_u[$gi] = $BTr[$BTuF];
				$BT_v[$gi] = $BTr[$BTvF];
				$BT_u_var[$gi] = $BTr[$BTerrF]**2;
				$BT_v_var[$gi] = $BTr[$BTerrF]**2;
#				print(STDERR "$gi $BT_u[$gi] $BT_v[$gi] $BT_u_var[$gi] $BT_v_var[$gi]\n");
			}
        } else {
			croak("$opt_r: not a valid reference-velocity file (ANTS format)\n");
		}
	} else {													# non-ANTS file (LDEO_IX assumed)
		croak("$0: -m not supported for LDEO_IX output\n")
			if defined($opt_m);
		while (<BTF>) {
			last if /^Columns\s+=\s+z:u:v:err/;
		}
		croak("$opt_r: not a valid reference-velocity file (non-ANTS format)\n")
			unless /^Columns\s+=\s+z:u:v:err/;
		while (<BTF>) {
			my($depth,$u,$v,$err) = split;
			croak("$0: cannot handle non-numeric BT data (implementation restriction)\n")
				unless numberp($depth) && numberp($u) && numberp($v) && numberp($err);
			my($gi) = int($depth / $DZ);
			$BT_u[$gi] = $u;
			$BT_v[$gi] = $v;
			$BT_u_var[$gi] = $err**2;
			$BT_v_var[$gi] = $err**2;
#			print(STDERR "$gi $BT_u[$gi] $BT_v[$gi] $BT_u_var[$gi] $BT_v_var[$gi]\n");
		}
    }
    close(BTF);

	my($sumU,$sumV,$sumW,$dc_sumU,$dc_sumV,$dc_sumW,		# average integrated-shear velocities
	   $uc_sumU,$uc_sumV,$uc_sumW);
	my($nSumVel,$dc_nSumVel,$uc_nSumVel);
	my($wSumBTu,$wSumBTv,$wSumBTw);							# weighted sums of BT-ref'd velocities
	my($dc_wSumBTu,$dc_wSumBTv,$dc_wSumBTw);
	my($uc_wSumBTu,$uc_wSumBTv,$uc_wSumBTw);
	my($sumVarBTu,$sumVarBTv,$sumVarBTw);					# sum of variances of BT-ref'd vels
	my($dc_sumVarBTu,$dc_sumVarBTv,$dc_sumVarBTw);
	my($uc_sumVarBTu,$uc_sumVarBTv,$uc_sumVarBTw);

	for (my($r)=0; $r<@depth; $r++) {
		if (numberp($BT_u[$r]) && numberp($u[$r])) {
			$nSumVel++;
			$sumU += $u[$r]; $sumV += $v[$r]; $sumW += $w[$r];
			$wSumBTu += $BT_u[$r] / $BT_u_var[$r]; $sumVarBTu += 1/$BT_u_var[$r];
			$wSumBTv += $BT_v[$r] / $BT_v_var[$r]; $sumVarBTv += 1/$BT_v_var[$r];
			if (@BT_w) {
				$wSumBTw += $BT_w[$r] / $BT_w_var[$r]; $sumVarBTw += 1/$BT_w_var[$r];
			}
		}
		if (numberp($BT_u[$r]) && numberp($dc_u[$r])) {
			$dc_nSumVel++;
			$dc_sumU += $dc_u[$r]; $dc_sumV += $dc_v[$r]; $dc_sumW += $dc_w[$r];
			$dc_wSumBTu += $BT_u[$r] / $BT_u_var[$r]; $dc_sumVarBTu += 1/$BT_u_var[$r];
			$dc_wSumBTv += $BT_v[$r] / $BT_v_var[$r]; $dc_sumVarBTv += 1/$BT_v_var[$r];
			if (@BT_w) {
				$dc_wSumBTw += $BT_w[$r] / $BT_w_var[$r]; $dc_sumVarBTw += 1/$BT_w_var[$r];
			}
		}
		if (numberp($BT_u[$r]) && numberp($uc_u[$r])) {
			$uc_nSumVel++;
			$uc_sumU += $uc_u[$r]; $uc_sumV += $uc_v[$r]; $uc_sumW += $uc_w[$r];
			$uc_wSumBTu += $BT_u[$r] / $BT_u_var[$r]; $uc_sumVarBTu += 1/$BT_u_var[$r];
			$uc_wSumBTv += $BT_v[$r] / $BT_v_var[$r]; $uc_sumVarBTv += 1/$BT_v_var[$r];
			if (@BT_w) {
				$uc_wSumBTw += $BT_w[$r] / $BT_w_var[$r]; $uc_sumVarBTw += 1/$BT_w_var[$r];
			}
		}
	}

	if ($nSumVel > 0) {
		$refU = $sumU/$nSumVel - $wSumBTu/$sumVarBTu;
		$refV = $sumV/$nSumVel - $wSumBTv/$sumVarBTv;
		$refW = $sumW/$nSumVel - $wSumBTw/$sumVarBTw if (@BT_w);

		if ($dc_nSumVel > 0) {
			$dc_refU = $dc_sumU/$dc_nSumVel - $dc_wSumBTu/$dc_sumVarBTu;
			$dc_refV = $dc_sumV/$dc_nSumVel - $dc_wSumBTv/$dc_sumVarBTv;
			$dc_refW = $dc_sumW/$dc_nSumVel - $dc_wSumBTw/$dc_sumVarBTw if (@BT_w);
		} else {
			&antsInfo("$opt_r: insufficient reference-velocity data to constrain DC profile --- baroclinic profile only");
		}
	    
		if ($uc_nSumVel > 0) {
			$uc_refU = $uc_sumU/$uc_nSumVel - $uc_wSumBTu/$uc_sumVarBTu;
			$uc_refV = $uc_sumV/$uc_nSumVel - $uc_wSumBTv/$uc_sumVarBTv;
		    $uc_refW = $uc_sumW/$uc_nSumVel - $uc_wSumBTw/$uc_sumVarBTw if (@BT_w);
		} else {
			&antsInfo("$opt_r: insufficient reference-velocity data to constrain UC profile --- baroclinic profile only");
		}
	} else {
		&antsInfo("$opt_r: no valid reference-velocity data --- baroclinic profiles only");
	}
}

unless (defined($refU)) {									# no reference velocity => use zero mean
	my($sumU,$sumV,$sumW,$nSumVel);
	for (my($r)=0; $r<@depth; $r++) {
		if (numberp($u[$r])) {
			$nSumVel++;
			$sumU += $u[$r]; $sumV += $v[$r]; $sumW += $w[$r] if (@BT_w);
        }
    }
	$refU = $sumU / $nSumVel; $refV = $sumV / $nSumVel; $refW = $sumW / $nSumVel if (@BT_w);
}
unless (defined($dc_refU)) {
	my($dc_sumU,$dc_sumV,$dc_sumW,$dc_nSumVel);
	for (my($r)=0; $r<@depth; $r++) {
        if (numberp($dc_u[$r])) {
			$dc_nSumVel++;
			$dc_sumU += $dc_u[$r]; $dc_sumV += $dc_v[$r]; $dc_sumW += $dc_w[$r] if (@BT_w);
		}
	}
	if ($dc_nSumVel) {
		$dc_refU = $dc_sumU / $dc_nSumVel; $dc_refV = $dc_sumV / $dc_nSumVel;
		$dc_refW = $dc_sumW / $dc_nSumVel if (@BT_w);
	}
}
unless (defined($uc_refU)) {
	my($uc_sumU,$uc_sumV,$uc_sumW,$uc_nSumVel);
	for (my($r)=0; $r<@depth; $r++) {
        if (numberp($uc_u[$r])) {
			$uc_nSumVel++;
			$uc_sumU += $uc_u[$r]; $uc_sumV += $uc_v[$r]; $uc_sumW += $uc_w[$r] if (@BT_w);
		}
	}
	if ($uc_nSumVel) {
		$uc_refU = $uc_sumU / $uc_nSumVel; $uc_refV = $uc_sumV / $uc_nSumVel;
		$uc_refW = $uc_sumW / $uc_nSumVel if (@BT_w);
	}
}

for (my($r)=0; $r<@depth; $r++) {							# reference velocities
	$u[$r] -= $refU if defined($u[$r]);
	$v[$r] -= $refV if defined($v[$r]);
	$w[$r] -= $refW if defined($w[$r]);
	$dc_u[$r] -= $dc_refU if defined($dc_u[$r]);
	$dc_v[$r] -= $dc_refV if defined($dc_v[$r]);
	$dc_w[$r] -= $dc_refW if defined($dc_w[$r]);
	$uc_u[$r] -= $uc_refU if defined($uc_u[$r]);
	$uc_v[$r] -= $uc_refV if defined($uc_v[$r]);
	$uc_w[$r] -= $uc_refW if defined($uc_w[$r]);
}

#======================================================================
# Determine X Factor
#======================================================================

if ($dc_nSumVel && $uc_nSumVel) {
	my($first_w,$last_w);
	for (my($r)=0; !defined($first_w) || !defined($last_w); $r++) {
		$first_w = $dc_w[$r] unless defined($first_w);
		$last_w  = $uc_w[$r] unless defined($last_w);
	}
	
	my($X_Factor) = 100 * abs($last_w-$first_w) / sqrt(@depth / $DZ);
	&antsAddParams('X-Factor',$X_Factor);
	printf(STDERR "X-Factor = %.1f\n",$X_Factor);
}

#======================================================================
# Output Velocity Profile
#======================================================================

@antsNewLayout = ('depth','elapsed','u','v','w','nsamp',
				  'dc_elapsed','dc_u','dc_v','dc_w','dc_nsamp',
				  'uc_elapsed','uc_u','uc_v','uc_w','uc_nsamp');

for (my($r)=0; $r<@depth; $r++) {
	&antsOut($depth[$r]+$DZ/2,
			 $elapsed[$r],$u[$r],$v[$r],$w[$r],$nsamp[$r],
			 $dc_elapsed[$r],$dc_u[$r],$dc_v[$r],$dc_w[$r],$dc_nsamp[$r],
			 $uc_elapsed[$r],$uc_u[$r],$uc_v[$r],$uc_w[$r],$uc_nsamp[$r]);
}

#======================================================================
# Output Averaged Shear Profile
#======================================================================

if (defined($opt_s)) {
	@antsNewLayout = ('depth','elapsed','u_z','v_z','w_z','u_z.sig','v_z.sig','w_z.sig','nsamp',
							  'dc_elapsed','dc_u_z','dc_v_z','dc_w_z','dc_u_z.sig','dc_v_z.sig','dc_w_z.sig','dc_nsamp',
							  'uc_elapsed','uc_u_z','uc_v_z','uc_w_z','uc_u_z.sig','uc_v_z.sig','uc_w_z.sig','uc_nsamp');
	&antsOut('EOF');
    close(STDOUT);
	open(STDOUT,">$opt_s") || croak("$opt_s: $!\n");
	for (my($r)=0; $r<@depth; $r++) {
		&antsOut($depth[$r],$elapsed[$r],$uz[$r],$vz[$r],$wz[$r],$uzsig[$r],$vzsig[$r],$wzsig[$r],$nsamp[$r],
			     $dc_elapsed[$r],$dc_uz[$r],$dc_vz[$r],$dc_wz[$r],$dc_uzsig[$r],$dc_vzsig[$r],$dc_wzsig[$r],$dc_nsamp[$r],
			     $uc_elapsed[$r],$uc_uz[$r],$uc_vz[$r],$uc_wz[$r],$uc_uzsig[$r],$uc_vzsig[$r],$uc_wzsig[$r],$uc_nsamp[$r]);
	}
}

&antsExit();