The Role of Basic Spatial Concepts in Education: What Learners Bring to the Classroom

Lynn S. Liben* Kim A. Kastens* & Adam E. Christensen*

*The Pennsylvania State University (Department of Psychology); 2Columbia University (Lamont-Doherty Earth Observatory, Department of Earth & Environmental Sciences)

Background

Importance of Spatial Thinking in Science

Spatial thinking is a core cognitive domain. It has been increasingly recognized as critical for science and math education, e.g., the recent NRC report on Learning to Think Spatially

Spatial Concepts

Many students—from kindergartners to undergraduates—are trouble with even basic spatial concepts such as understanding Euclidean and Cartesian coordinate axes. Illustrative is research on the “water level task” (WLT) showing that many college students (especially females) have difficulty representing the invariant horizontality of liquid.

Water Level Sample Item

Spatial Thinking in Geology

We hypothesized that these spatial concepts are needed by field geologists as they observe and record on a map rock outcrops’ strike and dip.

Strike is the line at the intersection between the horizontal plane and the plane of the rock surface, recorded by a line on a map.

Dip is the angle between the horizontal plane and the plane of the rock surface, measured within the vertical plane.

Textbook illustration showing relevance of horizontality and verticality for strike & dip

Study 1

Study 1 was designed to study whether college students who have difficulty on the WLT also have difficulty learning strike and dip.

Participants

We screened roughly 600 undergraduates enrolled in introductory psychology courses for their understanding of horizontality on a 6-item WLT. Males and females from each of the following WLT Groups (~20/cell, N = 125) were then given geology instruction.

Geology Instructions & Tasks

- Students were given instructions (a) on strike and dip based on US Geological Survey explanations.
- Students were given an artificial outcrop made of plywood, similar to that shown in (b), and installed in a sloping area near a campus building (c).
- Students were asked to draw the strike line on a map of the nearby area of campus (d), to show dip direction, and to estimate dip in degrees.
- They were also asked to draw a line on another copy of the same map to indicate the orientation of a rod (e).

Key Findings: Study 1

Strike Lines

- Students varied greatly in their success in orienting the strike line on the map correctly. 41% of lines were off by 30° or more. Many students seemed to be recording the long axis of outcrop rather than strike. Males’ errors, 24°, were significantly smaller than females’ 31°.

Dip Lines & Numbers

- Students generally over-estimated dip by 20°. The modal response was 45° (correct 30°). Some gave impossible responses of over 90°.

Rod Lines

- Again, performance was highly variable, with 34% deviating from correct by 30° or more. On rod, performance differed both by sex (right), males’ error 24°, females’ error 43° and WLT (below), high, medium, low, respectively: 15°, 36°, 49°.

Study 2

Study 2 was designed to pinpoint students’ difficulties by simplifying tasks to remove challenges we judged peripheral to core spatial concepts. Again, we enrolled students based on WLT scores (N = 94).

Task Modifications

- Tasks were given indoors (simpler, smaller, more rectilinear environment); model/small rod on a table replaced buried outcrop/large rod outside.
- Horizontal (strike) lines were drawn on models and direct instructions (“draw a line on the map to show the location and direction of this line”) were substituted for geology instructions. 8 rod, 8 strike, and 5 dip.

Key Findings: Study 2

- Although performance was far better than in Study 1, it remained far from ceiling. Errors were greater on strike (13°) than rod (7°) and were lower when correct lines paralleled walls’ axes (see samples).

Conclusions

The data suggest that educators should not presume that all students arrive at their classrooms with the basic spatial skills needed to understand and represent phenomena central to many science disciplines. Additional research is needed to test the potential value of providing instruction in basic spatial skills as a foundation on which to build science education.

Acknowledgments

This research was supported by NSF Grants to Liben and Kastens. REC #04-11686 and #04-11683, respectively. Trifles are those of the authors, and no endorsement by NSF should be inferred. Correspondence may be addressed to liben@psu.edu.