

Hudson River Estuary Snapshot Day October 12, 2006

http://www.ldeo.columbia.edu/edu/k12/snapshotday/

The Packet contains a variety of data gathering activities that are listed here. Any combination of these activities can be completed as part of Snapshot Day. Additional activities are available on the Snapshot Day website. Please be sure to submit your results to Margie Turrin (845-365-8179 (fax) or e-mail <u>mkt@ldeo.columbia.edu</u>) within 24-48 hours of collection! Questions? 845-365-8494.

PLEASE BE SURE TO RECORD UNITS OF MEASURE SO THAT COMPARISONS CAN BE MADE THROUGHOUT THE RIVER

ACTIVITY	PAGE
1. Site Background Information	Page 1
2. Tides & Currents	Page 2 & 3
3. Weather & Wind	Page 3
4. Beaufort Chart (wind)	Page 4-5
4. The Sampling Site Environment	Page 6-7
5. Site Sketch	Page 8
6. Other Physical Factors	Page 9
7. Chlorophyll Sampling	Page 10-11
8. Sediment Sampling	Page 12 -15
9. Chemical Measures	Page 16-18
10. Fish & Macroinvertebrates	Page 19-20
11. Hudson River Fish Checklist	Page 21-22
12. Other Observations - Shipping etc.	Page 23-

Recording Sheet I - Background Information.

1.	Coordinator/contact pe	erson				
	Organization					
	Street					_
	City		State	_Zip		
	phone	_fax		en	nail	
2.	School/group name					
	Name of teacher/group	leader	r			
	Street					
	City		_State	Zip_		_
	phone	fax			_email	
	Number of participants	5	grade le	vel/age_		

3. Please tell us where you are sampling. Be as specific as possible. (Example: swimming beach, Kingston Point, City of Kingston, Ulster County.)

4. Using the map included with your packet, give your location along the Hudson estuary in river miles. (The Battery at the southern tip of Manhattan is River Mile 0; the Federal Dam at Troy is River Mile 153.)

River mile

If you have a way to determine the latitude and longitude of your site, enter that data here.

GPS Latitude Longitude

Snapshot Day Activity I - Tides and currents

TIDES: At a beach you need two slender, strong sticks as tide markers. At the start, place one stick at the water's edge. Push it deep into the ground or pile rocks at its base to hold it in place. If the shore is bulkheaded, choose a distinct, immoveable feature on or near the bulkhead as a marker of whether the water level is rising or falling. If there are waves, use your judgment in deciding where the water's edge/surface is.

Using a watch, check your tide marker every 15 minutes. Record the water level as rising, falling, or unchanged. If the level has changed, place the second stick to mark the new position of the water's edge on a beach, or - if there's a bulkhead - choose a new water level marker.

(For a more exact measure use a dowel marked in 10cm increments.. If measuring off a bulkhead use a tape measure. Measure from the dock to the water surface. Have the students record the water level once the marker is set. Then follow above procedures but record actual measures so that a total tidal *change can be calculated over a total time available for the activity.*)

TIDES				
Time	Height in cm (if noting)	Rising & falling Tide		

CURRENTS: After recording the tide level, determine the direction of the current. Find a stick and

toss it as far as you can out into the river. Note which direction it moves. The current moving downriver towards the sea is called the ebb; the current moving upriver is the flood. Don't confuse the direction of waves with the direction of the current; waves and current are different things. On a windy day, choose a stick large enough that the wind can't easily push it against the current.

(If you want to, and are able to at your site, calculate knots you can adjust this as follows: Use a tongue depressor or popsicle stick for a standard unit of measure, and starting your stopwatch, place or toss the stick at a marked starting point (use a student to align with the start). Stop your watch after 60 seconds on a stop watch and place a student at the end point. Now have your students measure the distance between the two student markers with a metric measuring tape. To calculate knots find the distance in cm for 60 seconds and divide by 50. Knots = cm/sec divided by 50).

	CURRENT					
Cm/60 secs	Cm/sec	North/ South	Knots (cm/sec)/50	Ebb/Flood/Still (E/F/S)		

Example: If the stick traveled 125 cms in 60 seconds divide 125/50 = 2.5kts

Is there anything about the river or shoreline here that may cause the current near shore to flow in a different direction than the current out in the middle of the Hudson?

IF YOU NOTICE THAT THE CURRENT APPEARS TO BE DIFFERENT IN THE MAIN CHANNEL THAN IT IS IN THE SHORELINE AREA PLEASE RECORD THIS NOTATION USING "S" FOR SHORELINE AND "C" FOR CHANNEL. THE DATA FROM THE MAIN CHANNEL IS THE BEST DATA TO RECORD SO PLEASE BE ALERT TO DIFFERENCES THAT MIGHT EXIST.

<u>Snapshot Day Activity II – Weather and Wind</u> (PLEASE REFER TO BEAUFORT CHART ON PAGES 4-5)

1. Record weather conditions at the start of sampling.

a. Time_____ Air temperature _____ ^o F _____ ^o C

b. .Time_____ Air temperature _____^o F ____^o C

2. Wind speed (use Beaufort chart) (Record in knots) direction (coming from) Cloud cover (check one) clear partly cloudy mostly cloudy overcast

Any precipitation? What kind? How much?

If the weather changes over the time you are sampling, please note that here.

3. Briefly describe the weather for the last three days. Any rain, wind, or unusual temperatures?

http://www.islandnet.com/~see/weather/history/beauwludsomRiver Snapshot Day Recording Sheets Weather People and History

BEAUFORT WIND SPEED SCALE

Beaufort Force	Wind Speed in:		Term	Indications on Land and Sea	
Number	km/hr	knots			
0	calm	calm	Calm	Land: Smoke rises vertically. Sea: Sea like mirror.	
1	2-5	1-3	Light Air	Land: Smoke drifts slowly downwind. Sea: Ripples with appearance of scales: no foam crests.	
2	6-11	4-6	Light Breeze	Land: Leaves rustle. Sea: Small wavelets; crests of glassy appearance, not breaking.	
3	12-18	7-10	Gentle Breeze	Land: Leaves are in motion. Sea: Large wavelets; crests begin to break; scattered whitecaps.	
4	19-30	11-16	Moderate Breeze	Land: Small branches on trees move. Sea: Small waves, becoming longer; numerous whitecaps.	
5	31-39	17-21	Fresh Breeze	Land: Small trees sway. Sea: Moderate waves, taking longer form; many whitecaps; some spray.	
6	40-50	22-27	Strong Breeze	Land: Large branches sway. Sea: Larger waves forming; whitecaps everywhere; more spray.	
7	51-61	28-33	Near Gale	Land: Whole trees in motion.	

The Weather Legacy of Admiral Sir Francis Beaufort ©1998, <u>Spectrum Educational Enterprises.</u> All Rights Reserved. 4 http://www.islandnet.com/~see/weather/history/beauwHudsomRiver Snapshot Day Recording Sheets Weather People and History

				Sea: Sea heaps up;
				white foam from breaking waves
				begins to be blown in streaks.
				Land: Twigs and small branches
				break off trees.
				Sea: Moderately high waves of
8	62-74	34-40	Gale	greater length; edges of crests
				begin to break into spindrift;
				foam is blown in well-marked
				streaks.
				Land: Large branches break off
				trees;
			Strong	slight structural damage.
9	75-87	41-47	Cala	Sea: High waves; sea begins to
			Gale	roll; dense
				streaks of foam; spray may
				reduce visibility.
				Land: Trees broken; minor
				structural damage.
				Sea: Very high waves with
10	88-102	48-55	Storm	overhanging crests; sea takes
		10 00		white appearance as foam is
				blown in very dense streaks;
				rolling is heavy and visibility is
				reduced.
				Land: Widespread damage.
	100 11-		Violent	Sea: Exceptionally high waves;
11	103-117	56-63	Storm	sea covered with white foam
				patches; visibility further
	100 100			reduced.
12	108-132	64-71		
13	133-148	72-80		Land: Violent movement of trees
14	149-165	81-89		and much destruction.
15	166-183	90-99	Hurricane	Sea: Air filled with foam; sea
16	184-200	100-		completely white with driving
	107-200	108		spray; visibility greatly reduced.
17	201+	109+		

1 knot equals 1.15 statute miles per hour

The Weather Legacy of Admiral Sir Francis Beaufort ©1998, Spectrum Educational Enterprises. All Rights Reserved. 5

Snapshot Day Activity III - The Environment at the Sampling Site

In completing the physical survey of your sample site please include a 200 ft. segment extending up and downriver from your sampling site (your site bisects the segment). Sketch a map of your sampling site on the next page and answer the following questions. If available, use a digital camera to photograph your site.

1. Describe the land at your site. Is it forested? Open and grassy? A parking lot? Used by people for picnics, launching boats, fishing, swimming, or other activities?

Surrounding Land Use:

Estimated % urban/residential
Estimated % Forested
Estimated % Beach
Estimated % Industrial/Commercial
Estimated % Other (specify)

2. Describe the shoreline. Is it a beach? A marsh? Is it sandy, muddy, or rocky? Is it lined with bulkheading - wooden timbers or metal plates that hold the shore in place? Has riprap (a line of large rocks) been piled along the shore? Do any pipes discharge into the river here?

DESCRIBE & USE CHECK FORM:

Shoreline appearance: check all that apply						
Beach	Covered with	Banks altered	Shoreline RipRap (large			
	vegetation		rocks)			
Bulkhead (wood	Collected wood/debris	Piping entering the river -				
timbers/metal	in area?	(size)				
plates)		(North or South or sampling				
		site & estimate distance)				

3. Describe the water area in which you are sampling. How deep is it? Is the bottom sandy, muddy, weedy, or rocky?

WATER DEPTH	RIVER BOTTOM	WATER	WATER CALM
(be sure to list unit of	TYPE: Sandy, Weedy,	CHOPPY	
measure)	Rocky?		

4. Are there plants growing in or on the water? Do they cover more than half of the area you are sampling? Less than half? Use the Hudson River Field Guide to Plants of Freshwater Tidal Wetlands to identify any plants you find growing in the water. List them here.

What percent of your entire sampling area is covered with plants in the water?

Check if present and list estimated percentage of the total plant population for each plant:

Tidal Shallows:

 Clasping Pondweed_____% vegetation_____
 Water Milfoils_____% vegetation_____

 Sago Pondweed_____% vegetation_____
 Water Celery_____% vegetation_____

Water Chestnut_____% vegetation_____

Tidal Marshes:

Arrow Arum	% vegetation	(Comr
Arrowhead	% vegetation	_ F	Purple
Big Cordgrass	% vegetation	F	Reed (
Broad leaved Catta	il% vegetation		Saltwa
Bur-reed%	% vegetation	S	Saltme
Chairmaker's Rush		S	Spatte
(Three-square)	% vegetation	S	Spotte
Dotted Smartweed_	% vegetation	5	Swam
Golden Club	% vegetation		Sweet
Jewelweed	% vegetation		Wildri
Mud Wort	% vegetation	Y	rellov
Narrow-leaved Cate	tail% vegetation	Y	rellov
Pickerelweed	% vegetation	(OTHE
Phragmites			

(Common Reed)% vegetation
Purple Loosestrife % vegetation
Reed Grass% vegetation
Saltwater Cordgrass % vegetation
Saltmeadow Cordgrass % vegetation
Spatterdock % vegetation
Spotted Joe-Pye Weed% vegetation
Swamp Rose-Mallow% vegetation
Sweet Flag% vegetation
Wildrice% vegetation
Yellow Flag% vegetation
Yellow Pond Lily% vegetation
OTHER% Vegetation

Snapshot DayRecording Sheet IV - Sketch Map of the Sampling Site

Include a compass rose and rough scale. Label landmarks or notable features. Indicate specific locations where you sampled.

Snapshot Day Activity V - Other Physical Factors

1. Water temperature

If possible, record water temperature in degrees Celsius and degrees Fahrenheit. If you don't have both °C and °F thermometers, then convert whichever reading you do have to the other using the following formulas:

 $^{\circ}C = 0.556 \text{ x} (^{\circ}F - 32)$ $^{\circ}F = (1.8 \text{ x} ^{\circ}C) + 32$

It is best to take the water temperature several times in succession and then average. Over the day, you might want to see if there's any change, especially in shallow water and backwater areas, which may show more variation through the day due to sunlight or currrent changes. You will also need to take temperature readings as part of some chemical tests.

Time	Reading 1	Reading 2	Reading 3	Average
	°F °C			

2. Turbidity

Different techniques for determining turbidity use different units of measurement. Be sure to enter data on the correct line for the technique you use. Repeat several times in succession and average the results.

	Time	Reading 1	Reading 2	Reading 3	Average	
secchi disk						feet or
						meters
sight tube						JTUs
turbidimeter						NTUs

Snapshot Day Activity IV - Chlorophyll Sampling

Chlorophyll

We were just looking at turbidity. In the Hudson River turbidity is made up of small bits of plankton, pieces of detritus or decomposing plant and animal matter, and suspended bits of sediment. The pigment Chlorophyll is what allows plants (and algae) to convert water and carbon dioxide to organic compounds in the presence of light, a process called photosynthesis. There are several types of Chlorophyll to assist plants to capture light at different wavelengths, but all plant cells have chlorophyll "a". This activity will allow us to measure the amount of Chlorophyll "a" in your area of the river.

PLEASE FOLLOW THE PROTOTOL SHEET ON THE NEXT PAGE

120 ccs of river water will be collected and filtered through a fine mesh filter to separate the detritus, sediments and chlorophyll from the water. Once the water is filtered, examine the filter to evaluate the amount of material that is filtered. This will be an accumulation of not just chlorophyll but any suspended matter that was large enough to be filtered out. Using the color chart included with your kit select the color that best matches your filter and record on this data sheet.

The filter paper will be removed using tweezers – folded to protect the sample and placed in a vial and put on ice for collection and analysis at Lamont.

Label your vial with the following protocol:

Date – River Site –River Mile_ cc volume Example 101205 PP 25 120cc

Record here -TIME______ # ON THE COLOR CHART MOST CLOSELY MATCHING SAMPLE_____ Chlorophyll "a" Sampling – You are helping in a science research project on the river. In 2005 we began collecting data on the chlorophyll measures in the river taken on the same day at multiple locations. This information is of value to us. Please help us in the careful collection of this data. Please carefully follow procedures.

PROJECT DESCRIPTION: 120 ccs of river water will be collected and filtered through a fine mesh spun glass filter to separate the detritus, sediments and chlorophyll using the following protocol.

1. COLLECT YOUR WATER SAMPLE AND PLACE IT IN THE SHADE.

2. Open the filter holder (unscrew) – and using tweezers pick up a piece of filter paper and CAREFULLY place it in the **very center** of the holder and reseal the holder. Make sure the filter is **centered perfectly** and does not get caught on the threads while resealing. Put the holder aside while you complete step #2.

NOTE: DO NOT LOOSE THE SMALL "O" RING SEALER IN THE HOLDER. 3. STIR YOUR SAMPLE and then "suck" 60 ccs of water into the syringe.

4. Screw the filter holder on the end of the syringe and empty the syringe pushing the water through the filter at a steady stream. DO NOT USE EXCESSIVE FORCE.

(NOTE: the water you push through should not be added back to your sampling water). 5. Unscrew the filter holder. Refill the syringe a second time and repeat to push an additional 60 ccs of water through for a total of 120ccs through the filter.

6. Unscrew the filter holder. Look at the filter paper without touching it. Be sure it is not ripped or torn. If it is repeat the process. Compare the coloration to the chart and record the number most closely resembling the filter color.

7. USING THE TWEEZERS remove the filter paper and fold it without touching the sample surface. Slide it into the 5mm vial and seal it.

8. Label your vial with the following protocol – USE A PERMANENT MARKER: Date – River Site –River Mile_ cc volume EXAMPLE:

101206_PP_25_120cc

9. Place the vial on ice for pick up by one of the traveling Snapshot Day helpers.

Snapshot Day Activity IIV - Sediment Sampling Background

SEDIMENT SAMPLING – hand cores were distributed to a group of our participating stations to test this process. If you don't have a corer you can skip this activity.

You will take two cores. The first one you will examine and describe with your group; the second one will be collected in a Ziploc bag and returned to Lamont-Doherty Earth Observatory for X-Ray Fluorescence analysis (this will be picked up with your chlorophyll sample). Prior to sampling (i.e., before the bag gets wet), please use a permanent marker and label bag with the following information: Date – River Site –River Mile Example:

101206 PP 25 (for Piermont Pier)

Discussion items before extruding:

- The sediments in the core represent a period of time. The material at the bottom is older than the material on the top.
- If material has been accumulating steadily, a sediment core will contain a record of the material transported by the river through time.
- One of the challenges faced by scientists who study sediment cores is determining the length of time represented by the sediments core. You can not tell how many years your core represents by simply looking at it. The amount of time represented by your core will range depending on the specific place and processes of the river in each area. In sections with high deposition it could represent a very short amount of time (days to a year), while in other areas it could represent a much longer time (10s to 100s of years or longer).
- What you can tell from looking at it is whether the color changes over the length of the core. Note the color of the sediments at the very top of the core. If the color is light brown, this is an indication that the surface sediments are oxidized (in contact with oxygen in the water. The oxidized section is the top usually represents the most recent deposition. Measure this and record it to determine how active the deposition in your area is. Usually, the sediments change to a darker color below the oxidized layer, this is called anoxic (no oxygen) or reducing. It usually means that these sediments have been out of contact with the oxygen in the river water and are older. Often this section will have a sulfur like smell. Measure and record this section as well. Take a few additional minutes to observe the core and describe anything else that you think is significant. Are there other visible layers? Color changes? Before you extrude your core, make sure you measure the total length of the core.

Length of entire sediment sample core: _____ (units used)

Length of top layer of sediment sample core: _____ (units used)

Length of second layer of sediment sample core: _____ (units used)

Anything else you notice about the core? (colors, layers, etc.)

TO extrude a core follow the directions on the next 2 pages. Once you push the core out of the tube use the additional sheet captioned "Snapshot Grab_Log" to complete your examination.

DIRECTIONS: SEDIMENT SAMPLING PUSH CORER ACTIVITY

Your push-corer kit should contain 3 pieces:

1. The push corer, which is the long white PVC pipe with the valve on the end.

2. The clear plastic sampling tube.

3. The solid white dowel to be used to extrude or push the sediment sample out of the clear tube.

You will take two cores. The first one you will examine and describe with your group; the second one will be extruded into a Ziploc bag and returned to Lamont-Doherty Earth Observatory for X-Ray Fluorescence analysis (this will be picked up with your chlorophyll sample). Prior to sampling (i.e., before the bag gets wet), please use a permanent marker and label bag with the following information:

Date – River Site – River Mile

Example:

101205_PP_25 (for Piermont Pier)

ASSEMBLE THE SAMPLER: The sampler will need some MINOR assembly.

1. Loosen the plastic nut located on the end of the push corer. A few turns is all that is necessary; there is no need to completely unscrew the nut from the push-corer.

2. Insert the clear plastic tube in the opening until it seats in the end of the push corer. It should go in a few inches.

3. After the tube is inserted, tighten the nut firmly, this is necessary to hold the core tube **firmly** during sampling.

4. Once the push corer is assembled, make sure the red valve is **open** (valve handle is in line with the corer). It is closed when the valve handle is perpendicular to the corer.

SAMPLING:

1. Find an area in the water where the sediment is soft enough for you to push the clear end of the sampler straight in. You might have to try several times to find an area you can penetrate. (NOTE THE CLEAR TUBE IS STURDY BUT NOT INDESTRUCTABLE SO DON'T MUSCLE TOO HARD.)

2. Once the sampler has been pushed into the sediment, reach down in the water and close the red valve. (If the water is too deep to reach the valve, you can pull up the corer carefully and close the valve once it is within reach. The valve closing provides pressure to hold the sample in the tube – in deeper water the water pressure over the sample will do this.)

3. Once the valve is closed, gently pull straight up on the corer.

4. Keeping the sample upright bring it in to do your discussion/descriptions.

DISCUSSION:

HOLDING the sample upright, examine the core and discuss it with your students while it is still in the tube. **Turn to the prior page on your protocol sheet for points to focus on before extruding.**

EXTRUDING THE CORE:

1. When you are ready to extrude your core, loosen the plastic nut holding in the clear core tube. This should release the tube. Placing the white solid dowel in the bottom of the tube, gently pull the core out of the push corer.

2. Once the core tube has been removed from the push corer, GENTLY pour excess water of the

top of the core (tip slowly so as not to loose any sediment).

3. Once the water has been removed, turn the core on its side and push the white plastic dowel into the bottom of the core tube, forcing the sediments out the top. If this is the sample for group examination push it onto a tray or a plate or other flat surface. If this is the sample for XRF analysis, push it into a ziploc bag and seal it. Do not worry about it being squished – we will be mixing the sample to analyze it.

DISCUSSION: Once you have the core for group analysis use the sheet that is in your protocols to look through and analyze it with the group. Using the sheet record your findings on smell, rocks, shells etc. Discuss how these items might have ended up in the river and the role they play there.

X-Ray Fluorescence (XRF) Spectrometer– What does this mean – This piece of equipment can be used to measure lead and other metal concentrations in the sediments. There is a natural background reading of lead in the river (approx. 20ppm) but anthropogenic influences such as early 20th century industry, leaded gas etc. have caused in increase in that level. Using the XRF we can look at what the readings of various metals are in different areas of the river. This information will be generated at Lamont and the results provided back to the group. The hope is to use this information to roughly constrain the age of sediments you collect. A straightforward interpretation of this data is that low levels of lead similar to natural background would indicate sediments that are older than (deposited prior to) approximately 1900, while sediments that are younger or deposited after 1900.

(Note if the area you are coring is primarily sand the corer may not work and the sand may fall out when you lift the corer from the water. In this case if you would still like to examine the bottom of the river with your students you might be able to slide a flat piece of something under the base of the corer and still extract a sample to look at. If that isn't possible, consider using a jar to scoop out a section trying to obtain a sample that goes down 3-4 inches. The same activities can be completed with this type of sample. When you bag your sample please note it was not obtained with the corer.)

SNAPSHOT DAY SEDIMENT GRABIE OC Day Recording Sheets

GRAB ID#	Site I	Name	DATE		FORM COMPLETED B	YY:
					GROUP #	
TIME	LATI	TUDE	LONG	BITUDE	WATER DEPTH	LOCATION
	Yes	No		1	Descriptors - Please not	e additional Observations
H₂S smell					H2S smells of rotten egg	JS
Oil						
Oxidized top*					oxidation is a destinctly	lighter color sediment
					estimate dimensions of	oxided etc. and draw below
	Absent	Rare	Common	Abundant	Additional Comments	
Clay					dense feel	
Mud					smooth feel between fin	gers
Sand					gritty feeling between fir	ngers
Gravel					pea sized pieces of ston	e
Pebbles					pieces of stone larger th	an pea
Leaves						
Wood						
(dead/live?)						
except zebra)						
Zebra mussels						
macroinvertebrates						
Brick						
Coal						
Slag						
Living vegetation:						
Length of Core:					Length of Oxidized core	top (if present):
If Bagged - Number O	n Core Coll	ecion Bag				
Use this area to sketc	h the samp	le - show t	otal measu	irement, am	ount of the oxidized top	any other noted features.

Snapshot Day Recording Sheet VIII - Chemical Measurements

1. **Ph**

Repeat several times in succession and average the results.

Time	Reading 1	Reading 2	Reading	g 3 Averag	e
How was it d	etermined? (cł	neck one)			
litmus paper	indicato	r solution	meter	pH pen	other

2. Salinity

Most studies measure the concentration of chloride (Cl⁻) to determine salinity. In freshwater parts of the river, the units of measurement may be parts per million (ppm) or milligrams per liter (mg/l), which are equivalent. In saltier parts of the river, you may also see measurements expressed in parts per thousand (ppt); one part per thousand equals 1000 mg/l. Background level of Cl⁻ in the freshwater part of the estuary is typically 20 - 30 mg/l (.020 - .030 ppt). In the seawater of the open Atlantic Ocean, Cl⁻ concentration is roughly 35,000 mg/l (35 ppt).

Repeat several times in succession and average the results. Specify the units of measurement.

Time	Reading 1	Readin	ng 2	Reading 3	Average	Units
How was it o	letermined?	(check one))			
drop count to	est kit	meter	refrac	tometer	test strips	hydrometer

(If reading conductivity please record with appropriate unit uS/cm (microsiemens) or mS/cm (milliseimens and then convert to salinity)

3. Dissolved oxygen.

The amount of dissolved oxygen (DO) in a river is one of the most important factors determining its health. Many variables influence DO, including temperature, time of day, presence of plants, and wind conditions. DO measurements are given in mg/l and as percent saturation. At 100% saturation, water of a given temperature cannot hold more DO. If more is added - by a waterfall, - saturation may temporarily exceed 100%, but in this case oxygen will diffuse from the water into the air. Saturation levels below 100% are not necessarily the result of pollution. At night, when plants aren't producing oxygen through photosynthesis, saturation may fall below 100% as living things use up the available DO.

time	temperature	in °C	DO (mg/l)	% satu	ration	
·	1	-				
How was it	determined? (check one)				
Drop co	unt test kits	_ ampules	digital	titrator	meter	_ other_

DETERMINING PERCENT SATURATION THE "QUICK AND EASY"

METHOD

Source of chart: http://waterontheweb.org/under/waterquality/oxygen.html For a quick and easy determination of the percent saturation value for dissolved oxygen at a given temperature, use the saturation chart above. Pair up the mg/l of dissolved oxygen you measured and the temperature of the water in degrees C. Draw a straight line between the water temperature and the mg/l of dissolved oxygen. The percent saturation is the value where the line intercepts the saturation scale. Waters with a saturation value of 90% or above are considered healthy.

ADDITIONAL CHEMICAL TESTS IF DESIRED

The following tests typically require more complex methods than those described above. There is no requirement to do these, but if you have the equipment and ability, the data would be welcome.

4. Nitrates.

Nitrate (NO_3^-) is relatively plentiful in freshwater ecosystems but less so in saltwater ecosystems, where it is typically the limiting nutrient.

Repeat several times in succession and average the results.

Time	Reading 1	Reading 2	Reading 3	Average	
					NO ₃ ⁻ (mg/l)

5. Phosphate

Phosphate (PO_4^{-3}) is usually the nutrient least available in freshwater ecosystems.

Repeat several times in succession and average the results.

Time	Reading 1	Reading 2	Reading 3	Average	
					PO ₄ -3 mg/l

6. Alkalinity

Alkalinity is a measure of water's ability to neutralize acids such as those that might be found in acid precipitation. Don't confuse it with pH. pH measures how strongly acidic or alkaline the water is; the alkalinity test determines the concentration of alkaline compounds in the water – or water hardness. In pure water small amounts of acid or alkaline substances will cause dramatic shifts in pH – however with the addition of small particles of water hardness substances in the system causes a buffering that absorbs or soaks up small changes to the system. Alkalinity results are given in mg/l of calcium carbonate (CaCO₃).

Repeat several times in succession and average the results.

Time	Reading 1	Reading 2	Reading 3	Average	
					CaCO ₃ mg/l

Snapshot Day Activity IX - Fish & Macroinvertebrates

The data section below is set up for fish and invertebrates such as crabs and crayfish that are easily visible without magnification. This sheet can be adapted if you plan to capture and study plankton. If making repeated collections, record data for each haul and then add the catch totals together. If you have trouble identifying organisms to the species level, list them at the most specific level of classification possible. Young of the year herring - alewife, blue-back herring, and American shad - look very similar to one another, as do very young sunfish. Group them together as herring or sunfish. Measure the largest individual of each species. It will not be possible to tell males from females for most of what you catch, but for a few - blue crabs for instance - it is possible and very useful to distinguish gender.

So that we can compare data from site to site please list LENGTH OF SEINE NET, LENGTH OF SEINE PULL and TOTAL NUMBER OF fish caught PER SEINE. If you site used traps please note catches per trap. If your group would like to compute Catch Per Unit of Effort please see directions on back.

Length of seine net Length of seine pull Total number of fish in pull

Total number of seines or catches you ran during your study period_____

Type of equipment used:

seine (list dimensions & mesh size)

eel pot____ dip net____ plankton net____ other:_____

FRESHWATER SPECIES

# of this	Species Type
Species	
	Alewife
	American Eel
	American Shad
	Amphipods
	Banded Killifish
	Blue Crab
	Blueback Herring
	Bluegill
	Damselfly Nymph
	Dragonfly Nymph
	Golden Shiner
	Grass Shrimp
	Herring
	Hogchoker
	Isopod
	Leech
	Mayfly Nymph
	Mud crab
	Pumpkinseed
	Sculpin

Shore Shrimp
Smallmouth Bass
Snail
Spottail Shiner
Stonefly Nymph
Striped Bass
Sunfish
Tesselated Darter
Threadworm
Water Flea
Water Penny
Water Strider
White Perch
White worm
Yellow Perch
Zebra Mussel

# of this	Species Type
Species	
	American Eel
	American Shad
	Amphipods
	Aquatic Isopods
	Asian Shore Crab
	Atlantic Menhaden
	Atlantic Silversides
	Atlantic Tomcod
	Barnacles
	Bay Anchovy
	Bivalves (mussels)
	Blackfish (tautog)
	Blue crab
	Blueback Herring
	Bluefish
	Bluegill sunfish
	Carp
	Comb Jellies
	Elver
	Grass shrimp

BRACKISH & SALTWATER SPECIES

Hogchoker
isopods
Menhaden (Bunker)
Minnow
Mummichog
Northern Kingfish
Pumpkinseed
River Herring
Scuds
Sea Squirt
Shore shrimp
Striped Bass
Striped Killifish
Tautog
Weakfish
White Perch
Yellow Perch
Zebra Mussel

To Compute Catch Per Unit Equivalent (CPUE) – Let's use a 50 ft. net for the example. Take length of net (50 ft.) X length of pull (example 7 yards X 3 = 21 ft.) then convert it to meters - 50 ft. X 21ft X 12 (for inches per foot) = total inches. Divide by 39.37 inches for inches in a meter = 320 meters. Then divide your catch by 320 to get catch per meter seined. This figure should be computed for each seine event.

If you pull the net in just to close a circle the formula is: Net Length (ft.) $_X 12 =$ total inches / 39.37 (inches in a meter) = _____ Then divide your catch by this number for your CPUE.

Seine # CPUE	Time	Catch Total	Length of Pull	_computed
Seine # CPUE	Time	Catch Total	Length of Pull	_computed
Seine # CPUE	Time	Catch Total	Length of Pull	_computed

Hudson River Fish Fauna Check List

1	lamprey, silver	58	rudd
2	lamprey, American brook	59	chub, creek
3	lamprey, sea	60	fallfish
4	shark <i>(bull shark?)</i>	61	sucker, longnose
5	dogfish, smooth	62	sucker, white
6	dogfish, spiny	63	chubsucker, creek
7	skate, little	64	hog sucker, northern
8	skate, barndoor	65	redhorse, shorthead
9	sturgeon, shortnose	66	Dacu
10	sturgeon, Atlantic	67	catfish, white
11	gar. longnose	68	bullhead, vellow
12	howfin	69	bullhead brown
13	ladyfish	70	catfish channel
13	honefish	70	stonacat
15	ool Amoricon	71	madtam tadnala
15	worm ool spool/lod	72	madtom, taupole
10	worm eel, speckieu	73	madtom, margined
1/	eel, conger	74	madtom, brindled
18	herring, blueback	75	pickerel, redfin
19	shad, hickory	/6	pike, northern
20	alewife		muskellunge, tiger (norlunge)
21	shad, American	77	pickerel, chain
22	menhaden, Atlantic	78	mudminnow, central
23	herring, Atlantic	78	mudminnow, eastern
24	shad, gizzard	80	smelt, rainbow
25	herring, round	81	herring, lake <i>(cisco)</i>
26	anchovy, striped	82	whitefish, lake
27	anchovy, bay	83	trout, rainbow
28	stoneroller, central	84	kokanee <i>(sockeye)</i>
29	goldfish	85	salmon, chinook
30	dace, redside	86	whitefish, round
31	chub, lake	87	salmon, Atlantic
32	carp, grass	88	trout, brown
33	shiner, satinfin	89	trout, brook
34	shiner, spotfin	90	trout, lake
35	carp, common	91	lizardfish, inshore
	carp, mirror (var.)	92	trout-perch
36	minnow, cutlips	93	rockling, fourbeard
37	minnow, brassy	94	cod. Atlantic
38	minnow, eastern silvery	95	hake, silver <i>(whiting</i>)
39	shiner, bridle	96	tomcod. Atlantic
40	shiner, common	97	nollock
41	dace nearl	98	hake red (ling)
42	chub hornyhead	99	hake snotted
13	shiner golden	100	hake, spotted
44	shiner comely	100	cusk_eel strined
44 <u></u>	shiner emerald	102	toodfish ovstor
43	shiner, chici alu	102	coacefish (anglaufish)
40	shiner, blackchin	103	gooselisii (<i>anglerjisn</i>)
4/	shiner, Diacknose	104	neediensn, Atlantic
48	shiner, spottall	105	houndfish
49	sniner, sand	106	minnow, sneepshead
50	shiner, rosyface	107	killifish, eastern banded
51	dace, northern redbelly	108	mummichog
52	dace, finescale	109	killifish, striped
53	minnow, bluntnose	110	killifish, spotfin
54	minnow, fathead	111	mosquitofish, western
55	dace, eastern blacknose	112	silverside, brook
56	dace, longnose	113	silverside, rough
57	bitterling	114	silverside, inland

115	silverside, Atlantic
116	stickleback, fourspine
117	stickleback, brook
118	stickleback, threespine
119	stickleback, ninespine
120	cornetfish, bluespotted
121	seahorse, lined
122	pipefish, northern
123	gurnard, flying
124	sea rohin northern
125	sea robin, northern
126	sculnin slimy
120	sea rayan
127	arubby
120	grubby
12/	scuipin, iongnorn
130	
131	seasnall, Atlantic
132	perch, white
133	bass, white
134	bass, striped
135	sea bass, black
136	gag (grouper)
137	bass, rock
138	sunfish, bluespotted
139	sunfish, banded
140	sunfish, redbreast
141	sunfish, green
142	pumpkinseed
143	warmouth
144	bluegill
145	bass, smallmouth
146	bass, largemouth
147	crappie, white
148	crappie, black
149	darter, greenside
150	darter, fantail
151	darter tessellated
152	nerch vellow
152	lognorch
153	dartar shield
154	wellovo
155	highly short
150	bluefich
157	
158	codia
159	snarksucker
160	jack, crevalle
	moonfish, Atlantic
162	lookdown
163	permit
164	schoolmaster
165	snapper, gray <i>(mangrove)</i>
166	mojarra, spotfin
167	pigfish
168	sheepshead
169	pinfish
170	scup <i>(porgy)</i>
171	drum, freshwater (sheepshead)
172	perch, silver
173	weakfish

174	spot <i>(Lafayette)</i>
175	kingfish, northern
176	croaker, Atlantic
177	butterflyfish, foureye
178	butterflyfish, spotfin
179	mullet, striped
180	mullet, white
181	sennet, northern
182	guaguanche
183	tautog (blackfish)
184	cunner (bergall, chogy)
185	gunnel, rock
186	stargazer, northern
187	blenny, feather
188	blenny, freckled
189	sand lance, American (sand eel)
190	sleeper, fat
191	goby, naked
192	goby, seaboard
193	goby, seaboard
194	goby, highfin
195	mackerel, Atlantic
196	mackerel, Spanish
197	butterfish
198	flounder, Gulf Stream
199	flounder, smallmouth
200	flounder, summer <i>(fluke)</i>
201	flounder, fourspot
202	windowpane
203	flounder, winter
204	flounder, yellowtail
205	tonguefish, northern
206	hogchoker
207	filefish, orange
208	filefish, planehead
209	burrfish, striped
210	puffer, smooth
211	nuffer northern

211 _____ puffer, northern212 _____ cowfish, scrawled

Taxonomic div	ersity:
Class	4
Order	26
Families	73
Genera 150	
Species 212	

Fish taxonomy list compiled and contributed by:

Tom Lake NYSDEC Hudson River Estuary Naturalist <u>trlake7@aol.com</u> September 2005

Snapshot Day Activity X- Other Observations 1. Shipping.

Should you see large ships, tugs, or barges pass your site, note the following information if possible. A loaded ship or barge is full of cargo, and rides lower in the water than a light - empty - vessel. Binoculars are helpful in gathering the information requested here.

			Southbound/	loaded/	
Time	Type of ship	Name	Northbound	light	cargo

2. Other items of interest.

Feel free to record any other observations. This could include birds seen, items found on the beach, or any other things you find interesting