A Day in the Life of the Hudson River Estuary
October 18, 2011

http://www.ldeo.columbia.edu/edu/k12/snapshotday/

IF YOU ARE SUBMITTING STUDENT FORMS PLEASE INCLUDE THIS COVER SHEET

The posted sheets contain a variety of data gathering activities. Any combination of these activities can be completed as part of Snapshot Day. Additional activities to support your field experience are available on the Snapshot Day website.

Please be sure to submit your results to Margie Turrin (845-365-8179 (fax) or e-mail mkt@ldeo.columbia.edu) within 24-48 hours of collection! Questions? 845-365-8494. Submit this cover sheet with any set of data sheets your submit. THANK YOU!

PLEASE BE SURE TO RECORD UNITS OF MEASURE SO THAT COMPARISONS CAN BE MADE THROUGHOUT THE RIVER

Recording Sheet I - Background Information.

1. Coordinator/contact person__
 Organization__
 Street__
 City_________________________ State____ Zip______________
 phone________ fax________ email______________________________

2. School/group name__
 District________
 Name of teacher/group leader__
 Street__
 City_________________________ State____ Zip______________
 phone________ fax________ email______________________________
 Number of student participants____ grade level/age_____________________
 Adult helpers___

3. Please tell us where you are sampling. Be as specific as possible. (Example: swimming beach, Kingston Point, City of Kingston, Ulster County.)

4. Using the map included with your packet, give your location along the Hudson estuary in river miles. (The Battery at the southern tip of Manhattan is River Mile 0; the Federal Dam at Troy is River Mile 153.)
 River mile ______
 If you have a way to determine the latitude and longitude of your site, enter that data here.
 GPS Latitude______________________ Longitude________________________
Name_________________ Snapshot '11 Physical Setting Data Location_________________
(including tides and currents)

Time: _______

1. **Location**: We will be comparing data with other groups along the Hudson, so it is important to note our exact location. Location Name_________________. Using your Hudson River Estuary map, give your location in **river miles**: _______ and if possible GPS Latitude:______________ GPS Longitude:______________

2. **Tides**: Tides cause the water of the Hudson River to rise and fall due to the gravitational pull of the sun and the moon. Tides can be measured over a 30 minute time with a **Tide Meter Stick**, or another marker to find out whether the water is rising, falling, or staying the same. First, record the time, and then check the water level using your measuring stick. Check the stick again 30 minutes later and record.

 - **Start time:** _______ **Water height in cm.**:_______
 - **Check time:** _______ **Water height in cm.**:_______ rising falling unchanged (circle one)
 - **Check time:** _______ **Water height in cm.**:_______ rising falling unchanged (circle one)
 - **Check time:** _______ **Water height in cm.**:_______ rising falling unchanged (circle one)
 - **Check time:** _______ **Water height in cm.**:_______ rising falling unchanged (circle one)

3. **Currents**: In what direction is the water moving? A current is moving downriver is called the **ebb**, a current moving upriver it is called the **flood**, and if there is no current it is **still**. Toss a stick as far as you can out into the river and watch to see which way it moves. Is it Ebb, or Flow?
 - **Time:** _______ **Current:** ebb flood still (circle one) ___Cm/60 secs ___Cm/sec___Knots
 - **Time:** _______ **Current:** ebb flood still (circle one) ___Cm/60 secs ___Cm/sec___Knots
 - **Time:** _______ **Current:** ebb flood still (circle one) ___Cm/60 secs ___Cm/sec___Knots
 - **Time:** _______ **Current:** ebb flood still (circle one) ___Cm/60 secs ___Cm/sec___Knots

 *To determine knots: measure distance orange or stick travels in 60 secs. Divide by 60 for cm/sec and divide by 51.4 for knots. The formula for knots is (cm/sec)/51.4

 Is there anything about the river or the shoreline that may cause the current near shore to flow in a different direction than the current out in the middle of the Hudson?

4. **Weather Conditions**:
 - **Time:**______ **Air temperature:** _____°F _____°C
 - **Wind speed**: **Beaufort Chart**: Force #: ______
 - **Wind Speed in Km/hr**:______Knots______
 - **Wind direction (direction coming from)**________
 - **Cloud cover**: (clear, partly cloudy, mostly cloudy, overcast)________________
 - **Precipitation (rain)**? _____ If so, how much? ______

 Briefly describe the weather for the last 3 days: Any rain, wind or unusual temperatures?

Observations

Comment on unusual tides or currents, weather shifts or anything you think should be noted.
Name_________ Snapshot '11 Observing Surroundings Location__________

Let’s look at your sampling site. At this station we will describe the site and any plants in and around your collection area. Include plant materials in the water, as well as along the water’s edge.

1. Sketch your sampling site. Be sure to include a compass rose showing N/S/E/W and locate the River on your sketch, and mark where your sampling site is.

2. What is the surrounding land type at your site. Is it pier? forested? Grassy? Parking lot? What is it mainly used for? picnics, boating, swimming, fishing? (Circle choices)

3. Provide the following uses as a percentage of 100 – (for example 50% is half the usage):
 Urban/residential___ forested___ Beach___ Industrial/Commercial___ Other___

4. Shoreline – is it Sandy, muddy or rocky? (Circle all that applies). Check all that apply:
 ___ Beach ___ Covered in vegetation ___ Banks altered ___ Rip Rap (large rocks) ___ Bulkhead (with wood timbers) ___ Piping noted entering the river

5. Describe the water area where you are sampling:
 Depth_______ Bottom sandy____ muddy ____ rocky____ weedy_______
 Water: Calm____or Choppy_____

6. Name plants that you have identified and percent of the total area they cover:
 Plant Name % cover Plant Name % cover
 _______________________ ________ _______________________ ________
 _______________________ ________ _______________________ ________
 _______________________ ________ _______________________ ________
 _______________________ ________ _______________________ ________
 _______________________ ________ _______________________ ________
 _______________________ ________ _______________________ ________

3
7. **Commercial traffic**: List below any large boats, tugs, or barges that you see traveling on the Hudson. A loaded barge is full of cargo and rides lower in the water than a light one.

<table>
<thead>
<tr>
<th>Time:</th>
<th>name</th>
<th>color</th>
<th>Northbound or Southbound:</th>
<th>full or empty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time:</th>
<th>name</th>
<th>color</th>
<th>Northbound or Southbound:</th>
<th>full or empty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time:</th>
<th>name</th>
<th>color</th>
<th>Northbound or Southbound:</th>
<th>full or empty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. **What else do you see?** Use this section of the sheet to write down anything else you note during the day. For example: birds you see, other animals that might be down at the river, are there lots of people fishing and using the river etc.
Name:____________ Snapshot 11: Turbidity Location:__________

USE THE SEPARATE STEP-BY-STEP PHOTO DIRECTION SHEETS TO COMPLETE EACH OF THESE TESTS. RESULTS WILL BE RECORDED ON THIS SHEET.

1. **Turbidity** is a cloudiness of the water. Light can penetrate farther in clear water than it can in turbid water. The Hudson River is naturally turbid. Turbidity can be caused by small plants, and animals, sand and mud. We will measure the turbidity of water in the Hudson River.

 Time: _____________ Circle equipment used

 1)Secchi disk (cm) 2) Short Sight tube (JTU) 3) Long Site Tube (cm) 4)Turbidimeter (NTU)

 ______________ _____________ ______________ ____________

 Reading Reading 2 Reading 3 Average

 (Make sure that you RECORD the correct unit for the piece of equipment that you are using; feet, cm, meters, JTU's or NTU's)

2. **Chlorophyll** is a measure of the pigment in plants and algae that collects the energy needed for photosynthesis. Measuring chlorophyll gives us an idea of how much plankton is in the river. We need to filter the water and "catch" all the particles in the water on a filter. After filtering 120 mls of water (2 syringes) look at the filter and match the filter color to the chart on the direction sheet. The number you record represents chlorophyll, as well as other plankton and particles in the river.

 Time: ______ Color chart number best matching your sample______

3. **Sediments** are small pieces of sand, minerals and organic matter found in water. When the water is calm many of the sediments sink to the bottom of the water and provide a place for plants to take root. We will be taking a sample of sediment from the bottom of the Hudson. This sediment represents a period of time...but the amount of time is a mystery - it varies in different places in the river.

 COMPLETE THE CORE SAMPLING SHEET ON THE NEXT PAGE

 Examine your sample in the collection tube. Hold it upright just as you collected it. The material at the bottom is older than the material at the top. Do you see any color change or layers in the sample? If the color at the top of the sample is light brown, it is an indication that the surface is still unsettled and moving around in the water mixing oxygen from the water in with the sediments. Measure the length of this layer. Look to see if the lower sediments have become darker, which shows that they have been out of contact with the oxygen in the river and are older. This darker, older section will often have a sulfur-like smell. Measure and record this section, too.

 Length of entire sediment sample core: ______________(note units used)

 Length of top layer:_________(note units) Length of second layer:_______(note units)

 What is the grain size like? Fine grain___, larger grain______, Mix______

 Is there a lot of plant material in the core?_____________ NOTES_________________

Observations

Is the water really turbid? How would you describe it in words?
'DAY IN THE LIFE' SEDIMENT PUSH CORE LOG

<table>
<thead>
<tr>
<th>GRAB ID#</th>
<th>Site Name</th>
<th>DATE</th>
<th>FORM COMPLETED BY:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>GROUP #</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>WATER DEPTH</th>
<th>LOCATION</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>Descriptors - Please note additional Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂S smell</td>
<td></td>
<td>H₂S smells of rotten eggs</td>
</tr>
<tr>
<td>Oil</td>
<td></td>
<td>oxidation is a distinctly lighter color sediment</td>
</tr>
<tr>
<td>Oxidized top*</td>
<td></td>
<td>estimate dimensions of oxidized etc. and draw below</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absent</th>
<th>Rare</th>
<th>Common</th>
<th>Abundant</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td></td>
<td>dense feel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mud</td>
<td></td>
<td>smooth feel between fingers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td></td>
<td>gritty feeling between fingers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravel</td>
<td></td>
<td>pea sized pieces of stone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pebbles</td>
<td></td>
<td>pieces of stone larger than pea</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leaves</th>
<th>Wood</th>
<th>Shells Oysters (dead/live?)</th>
<th>Fresh water mussels except zebra</th>
<th>Zebra mussels</th>
<th>macroinvertebrates</th>
<th>Brick</th>
<th>Coal</th>
<th>Slag</th>
<th>Living vegetation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Length of Core:</th>
<th>Length of Oxidized core top (if present):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>If Bagged - Number On Core Collection Bag</th>
<th></th>
</tr>
</thead>
</table>

| Use this area to sketch the sample - show total measurement, amount of the oxidized top any other noted features. | |
Snapshot Day Worksheet - SALINITY

When we measure salinity we are measuring the amount of salt present in water. Much of this salt is sodium chloride, just like table salt. The main source of salt in the Hudson is seawater pushing in from the ocean. There are only very small amounts of salt in the fresh water entering the river.

* Expected Hudson Range: ~40 ppm in the freshwater section to ~29,000 ppm in harbor*

Put a checkmark in the box next to the measuring method you are using. Follow the instructions for completing the test and then record your results below.

- **TITRATOR STRIPS**
 Measure chloride by color change (to white) along a scale.

 On strip's scale, white color ends at ______. Find this number on the conversion table.

 Read the chloride concentration that goes with this number. Write it here: ______ mg/L Cl⁻

- **DROP COUNT TEST KITS**
 Usually measure chloride using color change as a liquid chemical is added to the sample drop by drop.

 How many drops were needed for the sample to change color? ______ drops

 Number of drops times conversion factor (from instructions) equals chloride concentration.

 _____ X _________ = ________ mg/L Cl⁻

- **HYDROMETERS**
 Measure water's density (its specific gravity) using a floating object. As salinity increases, density increases, and the object floats higher.

 If using a hydrometer with a pointer, record salinity here: _________ parts per thousand (ppt)

 If using a glass hydrometer floating in a water sample:

 1. Record the temperature of the water sample _________ °C
 2. Record the specific gravity (to the fourth decimal place) from the hydrometer scale where the stem breaks the water's surface. Read at water level, not at the top of the meniscus. _________
 3. Record salinity from the specific gravity conversion table: _________ parts per thousand (ppt)

- **REFRACTOMETERS**
 Measure how light is bent—refracted—as it enters water. Refraction varies with density, which in turn varies with salinity (density increases with salinity).

 Read salinity where the shadowline crosses the display scale: _________ parts per thousand (ppt)

- **METERS**
 Measure how well water conducts electricity (better as salinity increases). They may show conductivity, salinity, or chloride concentration; be sure to specify units.

 Reading _________ Units of measurement ____________
Name__________________ Snapshot 11: Chemical Description Location____________________

1. **pH** - Expected Range - Most fish prefer 6.5 to 8.5 - pH measures how acidic or basic (alkaline) a solution is. pH is measured on a scale from 0 to 14. The middle of the scale, 7.0, is neutral, below 7.0 is acidic and above 7.0 is basic. Seawater tends to be more of a base than neutral, so the higher your salinity the higher your pH may be. There are NO UNITS used with pH.

 Circle equipment used for the test:
 - Test Strips
 - color match test kit
 - meter
 - pH pen

 Time: _________ Reading 1: _____ Reading 2: _____ Reading 3: _____
 Time: _________ Reading 1: _____ Reading 2: _____ Reading 3: _____
 Time: _________ Reading 1: _____ Reading 2: _____ Reading 3: _____
 Time: _________ Reading 1: _____ Reading 2: _____ Reading 3: _____

2. **Salinity** - Expected Range - ~40 ppm in freshwater section up to 29,000 ppm in harbor.
 A measure of the amount of salt present in the water (we are measuring the chloride) It is measured in PPT (parts per thousand) OR in smaller amounts as PPM (parts per million) or mg/l. Some people measure in PSU or practical salinity units. Others measure Conductivity as mS/cm (Microsiemens), uS/cm (millisiemens), or PSU. **Circle equipment used for the test:**
 - Drop count test kit
 - refractometer
 - quantab test strips
 - hydrometer

 Time: _________ Reading 1: _____ Reading 2: _____ Reading 3: _____ (note correct units)
 Time: _________ Reading 1: _____ Reading 2: _____ Reading 3: _____ (note correct units)
 Time: _________ Reading 1: _____ Reading 2: _____ Reading 3: _____ (note correct units)
 Time: _________ Reading 1: _____ Reading 2: _____ Reading 3: _____ (note correct units)

 (NOTE THERE IS AN INDIVIDUAL CALCULATION SHEET FOR SALINITY)

3. **Water temperature** Healthy Expected
 High in October would by ≤ 25°C
 Record water temperature in degrees Celsius or degrees Fahrenheit. TO convert between the two
 $$C = 0.556 \times (F - 32)$$
 $$F = (1.8 \times C) + 32$$

 * Time: _________ water depth (feet):_______
 Reading 1: _____°C _____°F
 Reading 2: _____°C _____°F
 Average: _____°C _____°F

 * Time: _________ water depth (feet):_______
 Reading 1: _____°C _____°F
 Reading 2: _____°C _____°F
 Average: _____°C _____°F

 * Time: _________ water depth (feet):_______
 Reading 1: _____°C _____°F
 Reading 2: _____°C _____°F
 Average: _____°C _____°F

 * Time: _________ water depth (feet):_______
 Reading 1: _____°C _____°F
 Reading 2: _____°C _____°F
 Average: _____°C _____°F

 Observations
 Describe the area where you are collecting water – was it in direct sun? shade? Covered with plants? Water very still? What else should we know about your sampling?
4. Dissolved oxygen (DO)
Healthy Expected Range 5.0-11.0 mg/L

The amount of dissolved oxygen in the water is one of the most important factors in telling how healthy that ecosystem is. Many variables affect DO, including temperature, time of day, presence of plants, and wind conditions. DO measurements are given in mg/l and as percent saturation. 100% saturation means that the water cannot hold any more oxygen at that temperature. If more oxygen is added (such as by a high wind or a waterfall) the oxygen will go from the water into the air. **Circle equipment used for the test:**

- meter
- drop count kit
- other

For test temperature use average from #3 above. For % saturation calculation use chart on bottom of page.

* Time: _______ Water temperature in °C ____ DO (mg/l) or PPM: ____% saturation _______

* Time: _______ Water temperature in °C ____ DO (mg/l) or PPM: ____% saturation _______

* Time: _______ Water temperature in °C ____ DO (mg/l) or PPM: ____% saturation _______

5. % Saturation of Dissolved Oxygen (DO)
Healthy Expected Range 90% or above

For a quick and easy determination of the percent saturation value for dissolved oxygen at a given temperature, use the saturation chart below. Locate your DO reading on the bottom scale (ppm equals mg/L). Locate the temperature of the water in degrees C on the top scale. Draw a straight line between the temperature and DO. The % saturation is the value where the line intercepts the saturation scale.

[Diagram of saturation chart]

Source of chart: http://waterontheweb.org/under/waterquality/oxygen.html
Name__________________________Snapshot '11 Fish and Macroinvertebrates ID Location________________

Use separate sheet for each seine OR note what was caught in each seine by noting seine #.

<table>
<thead>
<tr>
<th>TIME</th>
<th>Length of Net</th>
<th>Fish Species:</th>
<th># of individuals:</th>
<th>Size of largest (unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Macroinvertebrates:
1. ____________________________
2. ____________________________
3. ____________________________
4. ____________________________
5. ____________________________
6. ____________________________
7. ____________________________
8. ____________________________
9. ____________________________
10. ____________________________

Observations & Sketches
Sketch One Species. Comment on the diversity, of your catch, a specific species, the size...
– whatever catches your attention....

If your group can compute Catch Per Unit Of Effort Please Record This here:
Seine #:______ Time______ Catch Total_______ Length of Pull_______ Computed CPUE__________
John Muir, a famous naturalist and conservationist, wrote "When we try to pick out anything by itself we find that it is bound fast by a thousand invisible cords that cannot be broken, to everything in the universe."

Through journaling we hope to observe, record and better understand some of these relationships.

How do we learn about our natural environment? We **observe**. Direct observation and careful description helps us compare species, habitats and different geographical regions.

Recording a number is often not the full story. We can learn about plants (flora) and animals (fauna) by carefully observing and then recording our findings, complete with drawings or sketches. We can also learn to detect environmental clues that might help us to understand or explain our data.

For example at your fish station make note of:

1. Their appearance. How big are they? How are they shaped? How many fins they have and where? Do they have barbels? A lateral line? What color are they?
2. How they relate to each other.
 a. Do they cluster together or are they found alone?
 b. Are large and small, young and full grown, samples found together?
 c. Are they often found with one or two other specific types of plant or animal?
3. What is the water temperature like where they are found? The water chemistry?
4. Did you find them in just one kind of habitat – describe the habitat? (dry, wet, sandy, rocky, open water?)

You will be keeping a journal during the day. Use the recording sheets to record anything you feel is noteworthy or important. Take time to sketch, write or put down a few notes at each station or activity, not just the facts. Describe what you see, sketch things, and try and write down WHY you think something is of interest.