Observations and proxies of the surface layer throughflow in Lombok Strait

Publication Type: 
Year of Publication: 
Journal Title: 
Journal of Geophysical Research-Oceans
Journal Date: 
Mar 31
ISBN Number: 
Accession Number: 

Seasonal to interannual variability of the Lombok Strait surface layer transport is investigated. The geostrophic transport within the surface layer is estimated from the cross-channel pressure gradient measured by a pair of shallow pressure gauges positioned on opposing sides of Lombok Strait during 1996-1999. The Ekman transport through Lombok Strait, derived from scatterometer winds, is less than 10% or similar to 0.15 Sv of the estimated surface layer geostrophic transport. Monsoonal forcing is clearly evident in the regional sea surface height anomalies (SSHA) as derived from the satellite altimeter measurements. During the southeast monsoon, relatively low sea level is observed to the south of Lombok Strait, with relatively high sea level to the north; conditions reverse during the northwest monsoon. Estimated transports from the cross-channel pressure gradient, winds, SSHA and thermocline depth anomalies all reveal interannual variability associated with ENSO. Both the thermocline depth anomaly and the SSHA to the south of the East Java coast correlate significantly (r = 0.7) with the Lombok Strait total surface layer throughflow. The difference of SSHA from the south of the East Java coast minus the SSHA north of Lombok shows a higher correlation (r = 0.84). These high correlation values suggest that SSHA and thermocline depth anomalies can be used as proxies for the Lombok Strait surface layer throughflow. Qualitatively, such proxy transports agree with the surface transport inferred from the pressure gauges and Ekman transport in Lombok Strait from 1996 to 1999, and also with direct velocity measurements from current meter data obtained in 1985 and 2004-2005.


155CJTimes Cited:0Cited References Count:35

Doi 10.1029/2006jc003790