Optimization of the fixed global observing network in a simple model

Publication Status is "Submitted" Or "In Press: 
LDEO Publication: 
Publication Type: 
Year of Publication: 
Journal Title: 
Journal of the Atmospheric Sciences
Journal Date: 
Place Published: 
Tertiary Title: 
Section / Start page: 
ISBN Number: 
ISSN Number: 
Short Title: 
Accession Number: 
LDEO Publication Number: 
Call Number: 

An exact closed form expression for the infinite time analysis and forecast error covariances of a Kalman filter is used to investigate how the locations of fixed observing platforms such as radiosonde stations affect global distributions of analysis and forecast error variance. The solution pertains to a system with no model error, time-independent nondefective unstable dynamics, time-independent observation operator, and time-independent observation error covariance. As far as the authors are aware, the solutions are new. It is shown that only nondecaying normal modes (eigenvectors of the dynamics operator) are required to represent the infinite time error covariance matrices. Consequently, once a complete set of nondecaying eigenvectors has been obtained, the solution allows for the rapid assessment of the error-reducing potential of any observational network that bounds error variance.Atmospherically relevant time-independent basic states and their corresponding tangent linear propagators are obtained with the help of a (T21L3) quasigeostrophic global model. The closed form solution allows for an examination of the sensitivity of the error variances to many different observing configurations. It is also feasible to determine the optimal location of one additional observation given a fixed observing network, which, through repetition, can be used to build effective observing networks.Effective observing networks result in error variances several times smaller than other types of networks with the same number of column observations, such as equally spaced or land-based networks. The impact of the observing network configuration on global error variance is greater when the observing network is less dense. The impact of observations at different pressure levels is also examined. It is found that upper-level observations are more effective at reducing globally averaged error variance, but midlevel observations are more effective at reducing forecast error variance at and downstream of the baroclinic regions associated with midlatitude jets.


682DQTimes Cited:8Cited References Count:47