Crustal thickness variations along the Southeast Indian Ridge (100 degrees-116 degrees E) from 2-D body wave tomography

Publication Status is "Submitted" Or "In Press: 
LDEO Publication: 
Publication Type: 
Year of Publication: 
Journal Title: 
Geochemistry Geophysics Geosystems
Journal Date: 
Dec 17
Place Published: 
Tertiary Title: 
Section / Start page: 
ISBN Number: 
ISSN Number: 
Short Title: 
Accession Number: 
LDEO Publication Number: 
Call Number: 

Axial morphology along the Southeast Indian Ridge (SEIR) systematically changes from an axial high to a deep rift valley at a nearly uniform intermediate spreading rate between 100 degrees-116 degrees E, west of the Australian-Antarctic Discordance (AAD). Basalt geochemistry has a consistent Indian-mid-ocean ridge basalt (MORB) type isotopic signature, so changes in axial topography are attributed to variations in both mantle temperature and melt supply. Wide-angle seismic refraction lines were shot to four ocean bottom hydrophones within SEIR segments P1, P2, S1, and T, where each segment is characterized by a different morphology. We constructed 2-D crustal velocity models by jointly inverting hand-picked P wave refraction (Pg) and Moho reflection (PmP) traveltime data using a top-down, minimum-structure methodology. The results show a 1.5 km eastward decrease in crustal thickness across the study area, with segment averages ranging from 6.1 km at P1 to 4.6 km at T. Melt generation models require a similar to 30 degrees C decrease in mantle temperature toward the AAD to account for the crustal thickness trend. Significant changes in axial morphology accompany small-scale variations in crustal thickness, consistent with models of crustal accretion where ridge topography is determined by a balance between mantle temperature, melt supply, and cooling from hydrothermal circulation. Layer 3 thins by 3.0 km as layer 2 thickens by 1.4 km between segments P1 and T, reflecting the eastward decrease in melt supply and increase in melt lens depth. The trade-off in seismic layers may be explained by models relating the increase in overburden pressure on a deepening melt lens to the volume of magma erupted into the upper crust rather than cooling at depth to form new lower crustal material.


386KGTimes Cited:1Cited References Count:101

Doi 10.1029/2008gc002152