Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data

Publication Status is "Submitted" Or "In Press: 
LDEO Publication: 
Publication Type: 
Year of Publication: 
2009
Editor: 
Journal Title: 
Journal of Marine Systems
Journal Date: 
Feb 20
Place Published: 
Tertiary Title: 
Volume: 
76
Issue: 
1-2
Pages: 
95-112
Section / Start page: 
Publisher: 
ISBN Number: 
0924-7963
ISSN Number: 
Edition: 
Short Title: 
Accession Number: 
ISI:000263851000008
LDEO Publication Number: 
Call Number: 
Abstract: 

We present a generalized framework for assessing the skill of global upper ocean ecosystem-biogeochemical models against in-situ field data and satellite observations. We illustrate the approach utilizing a multi-decade (1979-2004) hindcast experiment conducted with the Community Climate System Model (CCSM-3) ocean carbon model. The CCSM-3 ocean carbon model incorporates a multi-nutrient, multi-phytoplankton functional group ecosystem module coupled with a carbon, oxygen, nitrogen, phosphorus, silicon, and iron biogeochemistry module embedded in a global, three-dimensional ocean general circulation model. The model is forced with physical climate forcing from atmospheric reanalysis and satellite data products and time-varying atmospheric dust deposition. Data-based skill metrics are used to evaluate the simulated time-mean spatial patterns, seasonal cycle amplitude and phase, and subannual to interannual variability. Evaluation data include: sea surface temperature and mixed layer depth; satellite-derived surface ocean chlorophyll, primary productivity, phytoplankton growth rate and carbon biomass; large-scale climatologies of surface nutrients, pCO(2), and air-sea CO2 and 02 flux; and time-series data from the joint Global Ocean Flux Study (JGOFS). Where the data is sufficient, we construct quantitative skill metrics using: model-data residuals, timespace correlation, root mean square error, and Taylor diagrams. (C) 2008 Elsevier B.V. All rights reserved.

Notes: 

Sp. Iss. SI414GDTimes Cited:6Cited References Count:83

DOI: 
DOI 10.1016/j.jmarsys.2008.05.015