The effects of liquid immiscibility and thermal diffusion on oxygen isotopes in silicate liquids

Publication Status is "Submitted" Or "In Press: 
LDEO Publication: 
Publication Type: 
Year of Publication: 
Journal Title: 
Contributions to Mineralogy and Petrology
Journal Date: 
Place Published: 
Tertiary Title: 
Section / Start page: 
ISBN Number: 
ISSN Number: 
Short Title: 
Accession Number: 
LDEO Publication Number: 
Call Number: 

Differences between the delta(18)O values of Si- and Fe-rich immiscible liquids in the system Fe2SiO4-KAl-Si2O6-SiO2 (Fa-Lc-Q) in isothermal experiments at 0.1 MPa have been determined experimentally to be 0.6 permil. The observed partition of O-18 into the Si-rich liquid is consistent with previous experience with the preferential partition of O-18 into Si-rich minerals in isothermal equilibrium with minerals of less polymerized structure. Crystallochemical principles affect the distribution of oxygen isotopes in coexisting isothermal liquids in the same way as they apply to isothermally coexisting crystals. The effects of Soret (thermal) diffusion on the distribution of oxygen isotopes in silicate liquids above the solvus in the system Fa-Lc-Q under conditions of an imposed temperature gradient of ca. 250 degrees C over 4 mm and at 2 GPa have also been investigated experimentally. Both the magnitude and the direction of separation of oxygen isotopes as a result of Soret diffusion are unexpected. For each of the silicate liquids, the cold end of the charge is enriched in O-18 by up to 4.7 permil. and the highest delta(18)O values are associated with the most silica-poor compositions. The distribution of oxygen isotopes appears to be similar in each liquid, regardless of their chemical compositions, which is in contrast to the behaviour of cations whose distributions are compositionally dependent and characterized by strong crystallochemical effects wherein network-forming species such as Si and Al separate to the hot end and Mg, Fe and Ca are segregated preferentially to the cold end. Structural units in the melts are evidently less selective between oxygen isotopes than between cations, because oxygen redistribution over all possible sites in these units proceeds according to mass. Self-diffusion coefficients of oxygen in basaltic liquids estimated from the Soret experiments are in accord with those from other isotope tracer experiments, and comparable to those of Si. The possible effects of Soret diffusion on the oxygen isotopic composition of metasomatic veins in the mantle are examined in light of these data, and indicate that decay of the thermal gradients in the veins exceeds that of the diffusion of oxygen needed to produce variations in the delta(18)O values of mantle minerals. Variations in oxygen isotope ratios in most natural systems as a result of Soret effects are unlikely.


153VTTimes Cited:6Cited References Count:28