El Nino-southern oscillation influences on the Mahaweli. streamflow in Sri Lanka

Publication Status is "Submitted" Or "In Press: 
LDEO Publication: 
Publication Type: 
Year of Publication: 
Journal Title: 
International Journal of Climatology
Journal Date: 
Place Published: 
Tertiary Title: 
Section / Start page: 
ISBN Number: 
ISSN Number: 
Short Title: 
Accession Number: 
LDEO Publication Number: 
Call Number: 

Despite advances over the last two decades in the capacity to predict the evolution of the El Nino-southern oscillation (ENSO) phenomenon and advances in understanding of the relationship between ENSO and climate, there has been little use of climate predictions for water resources management in the tropics. As part of an effort to develop such a prediction scheme, the ENSO influences on streamflow and rainfall in the upper catchment of the Mahaweli river in Sri Lanka were investigated with correlation analysis, composite analysis and contingency tables. El Nino conditions were often associated with decreased annual flows and La Nina with increased flows. The relationship of streamflow and rainfall with the ENSO index of NINO3 contrasted between January to September and October to December. During El Nino episodes the streamflow declines from January to September, but from October to December there is no clear relationship. On the other hand, rainfall shows a clear increase from October to December and declines during January, February, March, July and August. The simultaneous correlations of NINO3 with the aggregate January to September streamflow (r = -0.50), with January to September rainfall (r = -0.44) and with October to December rainfall (r = 0.48) are all significant at the 99% level. The correlation between one-season-in-advance NINO3 with both January to September streamflow and October to December rainfall remained significant at the 99% level.This study demonstrates the potential of using ENSO-based predictors for a seasonal hydro-climatic prediction scheme in the Mahaweli basin. It shows the significant contrasts in ENSO influence on rainfall and streamflow due to various hydrological processes. It has demonstrated that the potential for prediction is improved by investigating ENSO influences for the appropriate season for the given river catchment. Copyright (C) 2003 Royal Meteorological Society.


641DBTimes Cited:5Cited References Count:32

Doi 10.1002/Joc.865