Global air-sea flux of CO2: An estimate based on measurements of sea-air pCO(2) difference

Publication Status is "Submitted" Or "In Press: 
LDEO Publication: 
Publication Type: 
Year of Publication: 
1997
Editor: 
Journal Title: 
Proceedings of the National Academy of Sciences of the United States of America
Journal Date: 
Aug 5
Place Published: 
Tertiary Title: 
Volume: 
94
Issue: 
16
Pages: 
8292-8299
Section / Start page: 
Publisher: 
ISBN Number: 
0027-8424
ISSN Number: 
Edition: 
Short Title: 
Accession Number: 
ISI:A1997XQ12400005
LDEO Publication Number: 
Call Number: 
Abstract: 

Approximately 250,000 measurements made for the pCO(2) difference between surface water and the marine atmosphere, Delta pCO(2), have been assembled for the global oceans. Observations made in the equatorial Pacific during El Nine events have been excluded from the data set, These observations are mapped on the global 4 degrees x 5 degrees grid for a single virtual calendar year (chosen arbitrarily to be 1990) representing a non-El Nino year. Monthly global distributions of Delta pCO(2) have been constructed using an interpolation method based on a lateral advection-diffusion transport equation. The net flux of CO2 across the sea surface has been computed using Delta pCO(2) distributions and CO2 gas transfer coefficients across sea surface. The annual net uptake flux of CO2 by the global oceans thus estimated ranges from 0.60 to 1.34 Gt-C.yr(-1) depending on different formulations used for wind speed dependence on the gas transfer coefficient, These estimates;Ire subject to an error of up to 75% resulting from the numerical interpolation method used to estimate the distribution of Delta pCO(2) over the global oceans, Temperate and polar oceans of the both hemispheres are the major sinks for atmospheric CO2, whereas the equatorial oceans are the major sources for CO2. The Atlantic Ocean is the most important CO2 sink, providing about 60% of the global ocean uptake, while the Pacific Ocean is neutral because of its equatorial source flux being balanced by the sink flux of the temperate oceans, The Indian and Southern Oceans take up about 20% each.

Notes: 

Xq124Times Cited:209Cited References Count:74

DOI: