Integrated Late Eocene-Oligocene Stratigraphy of the Alabama Coastal-Plain - Correlation of Hiatuses and Stratal Surfaces to Glacioeustatic Lowerings

Publication Status is "Submitted" Or "In Press: 
LDEO Publication: 
Publication Type: 
Year of Publication: 
Journal Title: 
Journal Date: 
Place Published: 
Tertiary Title: 
Section / Start page: 
ISBN Number: 
ISSN Number: 
Short Title: 
Accession Number: 
LDEO Publication Number: 
Call Number: 

We integrated strontium and oxygen isotopic, biostratigraphic, and magnetostratigraphic studies of two upper Eocene-Oligocene boreholes drilled near Bay Minette and St. Stephens Quarry (SSQ), Alabama. Continuous coring provided fresh, unweathered material for magnetostratigraphic studies, minimizing problems reported from nearby outcrops. Difficulties with each technique were encountered because of diagenesis, absence of marker fossils, and the presence of unconformities; however, by integrating results from isotopic stratigraphy, biostratigraphy, and magnetostratigraphy, we correlated these relatively shallow-water deposits to the geomagnetic polarity time scale (GPTS). At the SSQ borehole, the upper Eocene to lower Oligocene section is apparently complete within our stratigraphic resolution (0.2-0.5 m.y.), allowing us to estimate the ages of several stratal surfaces. Late Eocene Sr isotope age estimates are as expected at the SSQ borehole, but Oligocene ages are approximately 1 m.y. older than expected due to diagenesis. At the Bay Minette borehole, a latest Eocene-earliest Oligocene and a late early Oligocene hiatus were detected. We correlate these two hiatuses and stratal surfaces at SSQ with global deltaO-18 increases inferred to represent glacioeustatic lowerings and with evidence for hiatuses on other continental margins: (1) a distinct disconformity at the base of the Chickasawhay Limestone at both boreholes and a hiatus at Bay Minette correlates with a global deltaO-18 increase; we revise the age of this surface (equivalent to the TB1.1 sequence boundary) making it approximately 2 m.y. older than previously reported; and (2) a surface at the top of the Shubuta Member (lowermost Oligocene) has been interpreted both as a condensed section and a disconformity; this surface at SSQ and a hiatus at Bay Minette correlate with a sharp global deltaO-18 increase and with hiatuses on the New Jersey and Irish margins. The timing of the hiatuses and stratal surfaces correlates with the inflection of the deltaO-18 increases and not with the maximum values, supporting models that indicate that unconformities form during the maximum rates of sea level fall.


Kz518Times Cited:17Cited References Count:66