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ABSTRACT

Teleseismic P-wave receiver functions and surface-wave dispersion measurements can be employed to
simultaneously infer the shear-wave velocity distribution with depth in the lithosphere. Receiver functions
are primarily sensitive to shear-wave velocity contrasts and vertical travel times and surface-wave
dispersion measurements are sensitive to vertical shear-wave velocity averages, so that their combination
bridges resolution gaps associated with each individual data set.

The inversions are performed using a joint, linearized inversion scheme which accounts for the relative
influence of each set of observations, and allows a trade-off between fitting the observations and the
smoothness of the model. Additional constraints on mantle structure are also incorporated during the
inversion procedure since requiring the data to blend smoothly into an appropriate deep structure affects the
estimate of the lower crust velocities, yielding models which are more consistent with expectations than
those resulting from unconstrained inversions. We have found that a priori knowledge of upper mantle
velocities are required to predict the dispersion up to 50 sec period and that stability constraints are
required. When dispersion is limited to periods grater than 15 sec a priori information on the upper crustal
velocities may also be required.

Results of applying this technique to data from different tectonic environments in the Arabian Plate and
North America will be presented.

OBJECTIVE

The object of this effort is to implement an efficient algorithm for jointly inverting receiver functions and
surface wave dispersion velocities to constraint shear-wave velocity with depth. The benefits of this joint
inversion have been shown by several authors [Ozalaybey et al., 1997; Du and Foulger, 1999; Julia et al,
2000]. When no noise is present, the complementary constraints in receiver functions and dispersion
observations uniquely characterize the shear-wave velocity variation with depth. Dispersion observations
are sensitive to absolute vertical shear-wave velocity averages and the receiver functions are primarily
sensitive to shear-wave velocity averages and vertical travel times. Their joint inversion give rise to models
where the details constrained by the receiver functions are superimposed to a background velocity model
constrained by the dispersion measurements. When noise is contaminating the data the constraints on the
model parameters become incompatible, since the noise independently distorts the model imaged by both
receiver function and dispersion measurements. The joint inversion, therefore, helps to avoid
overinterpreting the data as a result of over-fitting either data set noise.

The utility of this approach in a CTBT framework is that the crustal structure beneath seismograph stations
can be assessed. As CTBT monitoring stations are installed, teleseismic waves can be recorded and receiver
functions obtained during the initial operation. These estimates together with preexisting dispersion
measurements [e.g. Ritzwoller and Levshin, 1998] allow a rapid application of the proposed methodology,
so that the S-velocity structure beneath the station can be inferred in the short run. One of the difficult tasks
is then assessing estimates of the earth structure models. As in all science the consistency of independent
work lends confidence to a result. Some examples are shown below for the Arabian Shield where we



compare velocity models estimated from the joint inversions with those from refraction surveys [Mooney et
al., 1985; Prodehl, 1985; Badri, 1991].

Further verification of model suitability is the direct estimation of source properties or construction of
phase-match filters using the constructed velocity structures. We believe that this localized structures will
permit waveform inversion of regional signals for source identification and will help to produce more
accurate filters for signal identification and enhancement, and eventual source identification.

RESEARCH ACCOMPLISHED

We employ a "jumping" algorithm to jointly invert receiver functions and surface-wave dispersion
observations for shear-wave velocity. The jumping scheme allows us to implement smoothness constraint
in the inversion by minimizing a model roughness norm [Constable et al., 1987] that trade-off with the
goodness of fit. Our design of goodness of fit criterion [Julia et al., 2000] takes into account the different
units, magnitudes, noise and number of observations of the data and allows to set an influence parameter 'p'
before inversion to balance the relative importance of each data set of observations. In particular, a value of
p=0 only uses the receiver function data and a value of p=1 only uses the dispersion data.
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where D _and D, are the partial derivative matrices for the dispersion measurements and the receiver
function estimates, respectively, ﬂ and 77, are the corresponding vectors of residuals, X is the vector of S-
wave velocity, 550 is the starting model, and A is a matrix that constructs the second order difference of

the model X . The factor ¢ equals 1— p and the factor § balance the trade-off between data fitting and
model smoothness.

Additional constraints for upper mantle structure

Additional a priori information is required to stabilize the results of our models in the upper mantle. One
possibility is to require the deepest layers in our model to be similar to predetermined values, such as
PREM. This can be achieved by adding the following set of equations to the original system (1) [Jackson,
1972]

Wi = WX,

where W = (Wﬁ) is a diagonal matrix of weights and the vector )?a contains the a priori predefined

velocity values. Figure 1 is a comparison between the data only inversion and the velocity constrained
inversion for station SODA, in the Arabian Shield, the constraints consisting of forcing our inverted
velocity values to be PREM below 55 km depth. The predicted receiver functions are almost unchanged as
well as the predicted dispersion velocities at short periods. The sensitivity of the long period range to
mantle structure is an important point, since requiring our data to blend smoothly into a more appropriate



deep structure affects our estimate of the lower crust velocities. Therefore, it is important to insure a
reasonable upper mantle in the model, not allow the inversion to place an unusual and unlikely structure
and simply ignore it because it is unresolved. This example has implications for all narrow band studies of
structure.

Application to the Arabian Shield

We employ the methodology described in the preceding section to model receiver functions estimated in
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Figure 1: Comparison between the data-only and the constrained inversion results for receiver functions (upper
left), dispersion velocities (lower left) and resulting models (right) at station SODA. Solid, dotted and dashed
lines correspond to observations, data-only inversion and constrained inversion, respectively.

dispersion observations, to allow a better examination of the transition zones within the structure [Cassidy,
1992]. The data allow analysis to be performed using waves approaching the stations at two different
backazimuths, so that evidence for lateral variation is investigated as well. Figures 3, 4 and 5 show the
receiver function fits, dispersion velocity fits and resulting models, respectively. In general all the models
contain a rapid velocity increase during the few first kilometers below the surface, a lower crust with a
rather constant velocity, and a gradational crust-to-mantle transition.



Figure 2: Topographic map of the Arabian Peninsula showing the location of the temporary
broadband stations.
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Figure 3: (top) Receiver function waveforms for events approaching NE of the station. (bottom) Receiver
function waveforms for events approaching E of the station. Solid and dashed lines are observed and predicted
receiver functions, respectively. The station code is shown in the upper right corner.
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Figure 4: Observed (solid) and predicted (dashed) group velocities at temporary stations in the Arabian
Peninsula from the inverted models obtained jointly with the NE (top) and E (bottom) receiver function
waveforms. Station codes are labeled in the lower right corner.
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Figure 5: Resulting models obtained from the combination of the dispersion group velocity values and the NE
(left) and E (right) receiver functions.

We compare the NE models to the interpretive crustal sections provided by Mooney et al. [1985], Prodehl
[1985] and Badri [1991] (Figure 6), by assuming a Poisson's ratio of 0.25. In general our upper mantle is
slower, and no one

of the two contrasts inferred in the Mooney et al. [1985] refraction model observed in ours. The upper
mantle constraints imposed to our models could be masking such features and could be leading to
underestimated velocity values; however, we cannot see strong evidence of such contrasts in our receiver
functions and the fit to the high period dispersion velocities is satisfactory. Our crust-to-mantle transition
locations and thickness are, in general, in good agreement with those inferred from the refraction models.
Beneath HALM and RAYN, however, our inferred crust-to-mantle transitions contrast with a sharp



discontinuity in Mooney et al. [1985] and Badri [1991] interpretations. Actually, a sharper boundary is
more consistent with the sharp PpPms phase observed in the receiver function at station HALM, but not at
RAYN. The uppermost crust in our models is slower than that inferred from the refraction models; actually,
one expects to find low velocity near-surface material as a result of weathering fracture.
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Figure 6: Comparison between the NE resulting models (black) and the refraction profile models
from Mooney et al. [1985] (red), Prodehl [1985] (blue) and Badri [1991] (green).
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Application to Western US

We also employ the methodology to model receiver functions and dispersion measurements beneath two
broad-band stations in North America: ANMO and KNB (Figure 7). In this occasion we invert phase
velocity measurements for the fundamental mode of Rayleigh and Love waves with receiver functions at
two frequency bands and different ray parameters. As pointed out by Ammon et al. (1990) simultaneous
inversion of waveforms with different slowness alone does not appear to be enough to remove the typical
depth-velocity ambiguity in receiver function inversions. As in the Arabian Shield, data allow analysis to
be performed from various backazimuths; in this application, however, we will focus on the problems
posed by the unavailability of short period phase velocity measurements.

Figure 8 shows the velocity constrained inversion results at stations ANMO and KNB, the constraints being
the S-wave mantle velocities from TNA model [Grand and Helmberger, 1984]. At station ANMO we
observe a significant and unrealistic negative gradient at the uppermost part of the structure which contrasts
with the positive and more realistic gradient obtained in the same depth range beneath KNB. This different
behavior is probably caused by the different suitability of the starting model (a constant 8 km/s P-wave
velocity region over PREM) combined with the lack of constraints from our data. As it happened with the
upper mantle structure, this unlikely structure could be trading-off with the remaining of the model, and
independent information to constraint that part of the profile could be required. We also observe that some
arrivals within the 1-4 s time window are not fitted; these arrivals are associated to upper crust structure,
where the inversion procedure has imaged a negative gradient.

Figure 9 shows the inversion results at station ANMO when additional upper crust constraints are
considered. The additional constraints simply consist of forcing the uppermost layer to have a S-wave
velocity of 2.5 km/s, which is more realistic, and the negative gradient is removed. The fit to the receiver
function does not show major changes, and the arrivals in the 1-4 s time window are still not fitted. The
match to the dispersion velocities is still good but somewhat underpredicted in the short period range.
Additional information from local dispersion velocities or from local S-wave arrivals could provide more
realistic constraints. It is important to note, though, that Figure 9 demonstrates that this lack of absolute
velocity information in the uppermost structure does trade-off with the remaining of it.
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Figure 7: Topographic map of Western U.S. showing the location of various broad-band stations used in our
inversions for earth structure.
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Figure 8: Inversion results at stations ANMO (left) and KNB (right) from the combination of phase-velocity
dispersion measurements and receiver functions at different incidence and frequency contents. At ANMO the
upper crust is imaged as an unlikely negative gradient as a consequence of the lack of absolute velocity
constraints from the short-period dispersion values.
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CONCLUSIONS AND RECOMMENDATIONS

The combination of surface wave dispersion data and receiver functions provides constraints on the shear
velocity of the propagating medium that improve those provided by either of the data sets considered
separately, and helps to avoid overinterpretation of single data sets. We also show that this combination
cannot unambiguously resolve the fine structure of the upper mantle, although this will depend on the
bandwidth considered for the dispersion data set. When no long period information is availble, independent
information must be provided during the inversion process to insure a reasonable upper mantle in the
model, since allowing the inversion to place an unlikely structure affects the estimates of the lower crust
velocities. When no short period dispersion velocities are available, the upper crust velocity information
contained in the main peak of the receiver function data may not suffice to constrain that part of earth, and
independent constraints may be also required.
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