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ABSTRACT

We present a generalized multivariate seismic event identification method, Regularized Discrimination Analysis
(RDA) [Friedman 1989], that can be applied to a large number of regional discriminants. RDA is readily adaptable
to an outlier or classical identification approach to regional seismic identification.  RDA is designed to address the
problems associated with linear (LDA) and quadratic (QDA) discrimination in small-sample, high-dimensional
settings.  RDA includes LDA, QDA and Euclidean distance based nearest neighbor discrimination in its
parameterization.  RDA can be used to transition from an outlier analysis approach to seismic identification to
classical discrimination as quality explosion calibration data are collected.  Further, RDA provides the statistical
structure to model highly correlated seismic measurements.  We demonstrate the importance of including the
correlation structure between seismic measurements in event identification.  Not including this correlation structure
in any identification framework can aggravate identification errors and give an erroneous impression of capability.
With RDA, a large number of amplitudes from a Magnitude and Distance Amplitude Correction (MDAC) analysis
[see Taylor et al. 1999] can be used and no a priori sub-selection of amplitudes (or discriminants) is necessary.
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OBJECTIVE
Not accounting for the dependence between individual seismic discriminants in any identification process can
aggravate identification errors and give an erroneous impression of capability.  For example, weight is positively
correlated with height.  An individual who is 6 feet tall and weighs 120 lb. might reasonably be viewed as unusual.
However, taken alone, it is not unusual to find someone who is 6 feet tall, nor is it unusual for someone to weigh
120 lb.  It is the inconsistency with the correlated behavior of height and weight that makes a 6 foot, 120-lb. person
an outlier.

Two discriminants with a strong positive correlation provide redundant information about the source of a seismic
event (strongly correlated discriminants vary, in a probabilistic sense, together).  For example, if X  and Y  are
discriminants and the correlation between X  and Y  is ρ , then the variance of X Y+  is

Var X Y X Y X Y( )+ = + +σ σ ρσ σ2 2 2 . (1)

The Var X Y( )+  increases linearly in ρ .  It is reasonable to conjecture that many regional discriminants will be
positively correlated.  Combining correlated discriminants with a sum, and computing the variance as if they are
uncorrelated, may not be a good aggregation method.  For a measured event discriminant X x= , a p -value can be
computed as the conditional probability of observing a discriminant value equal to or more extreme than x .  It is
important to note that a p -value is a random variable because it is a function of a random variable.  For observed
discriminants X  and Y , we can compute the p -values px  and py  and then aggregate this marginal information



with the product p p pAggregate x y= .  However, aggregating with a product can also be dangerous.  For example, for

bivariate normal random variables X Y,  the variance of the product XY  is

Var XY Y X X Y X Y X Y X Y( ) ( )= + + + +µ σ µ σ ρµ µ σ σ ρ σ σ2 2 2 2 2 2 22 1 . (2)

Here, the linear correlation between X  and Y  is ρ .  Var XY( )  is a polynomial in ρ  with no real-valued zeros
( Var XY( ) > 0 ) and a minimum at one of the values 1, −1 or −µ µ σ σX Y X Y .  Values of ρ  that increase Var XY( )
are governed by −µ µ σ σX Y X Y .  This dependence will propagate into p -value calculations as well.

One of the main points of this paper is that seismic discriminants should be aggregated, to the best degree possible,
with a statistical likelihood or probability model.  A likelihood-based approach to combining discriminants provides
a rigorous method to properly account for correlation between discriminants.  The most desirable event
identification framework would be composed of discriminants that are independent of each other, yet strongly
indicative of the source of a seismic event.  Independent discriminants contribute in a purely additive (orthogonal)
way to the identification of an event, and never carry redundant information.  For example, a principal components
analysis (PCA) can be used to construct linear combinations of amplitudes that are orthogonal.  In the traditional
application of PCA, a subset (dimension reduction) of these linear combinations is used to construct a discrimination
rule.  The use of PCA in discrimination analysis has no limiting statistical deficiencies; however, we feel that the
PCA approach presents some seismological concerns.  Any feature selection analysis on amplitudes, including PCA,
defacto constructs discriminants that may or may not have a known physical basis. Thus, the primary two or three
PCA linear combinations may not be the best discriminants for a Mahalanobis distance based discrimination rule
(see McLachlan, 1992, page 197 for a statistical basis for this observation.).

In the regional setting, a PCA will likely be based on earthquake data with no explosion data. This means that the
PCA linear projections may do a poor job of combining explosion amplitude information, because Σ ΣEX EQ≠  (in

other words, important earthquake versus explosion discriminants may not be included in the final PCA linear
amplitude combinations).  If all the PCA linear combinations from ΣEQ are used in an outlier analysis, then there

will be no loss of information; however, this approach is conceptually equivalent to the regularized discrimination
analysis (RDA) we present.  RDA does not construct potentially controversial linear combinations as in a PCA.  In a
regional setting, the goal of independent discriminants, without a PCA type analysis is probably not possible
because different seismic phases may share similar apparent source spectra and may overlap in time (e.g., Lg spectra
may be contaminated by Sn coda).  Figure 1 illustrates a fabricated model for two discriminants X  and Y .

Figure 1a gives the bivariate ellipsoid that encloses 95% of the data from a particular source (the gray points).  The
Gaussian curves on the top and right sides of Figure 1a are the marginal densities for this model.  The black point on
the graph is clearly not a member of the population of gray points.  However, neither of the marginal representations
indicates that this point is unusual. Figures 1b and 1c show a transition from the region (black) that will include most
all of the gray data to an outlier region.  The circle, superimposed on Figure 1b, represents a source elimination rule
that is constructed by assuming no correlation between X  and Y . The ellipse, superimposed on Figure 1c,
represents a source elimination rule that is constructed with the inclusion of correlation between X  and Y .  The
most disturbing observation is the potential for identification errors when the no-correlation rule is used.  In this
case, the region outside of a decision rule defines false alarms and the darker region interior to a decision rule
defines missed-explosions.



OUTLIER DETECTION ANALYSIS
The methodology for outlier detection in the seismic context is well established (see Fisk et al. 1996; Taylor and
Hartse 1997).  Classical multipopulation discrimination methodologies may not be well suited to nuclear test
monitoring for two main reasons.  First, existing or planned seismic stations that will be used for monitoring have
little or no nuclear explosion data on which to adequately characterize the statistical distribution of the nuclear
explosion population.  Note that industrial mining explosions are not necessarily a good surrogate upon which to
base discriminants for nuclear explosions.  Secondly, even if a set of nuclear explosion data exists, it is likely to be
limited; that is, a small number of events, from a given test site, detonated under standard containment conditions (as
opposed to potential evasive conditions).  Such nuclear explosion data may not be suitable for deriving population
statistics used in broad-area monitoring.  Comparison of nuclear explosion data from different test sites or even from
within a single test site (e.g. Nevada Test Site) illustrates the complexities of near-source nonlinear material
properties and emplacement conditions on seismic discriminants (see Taylor 1991; Taylor and Denny 1991).

As noted in Fisk et al. (1996), for a large number of calibration earthquakes, the likelihood ratio outlier test statistic
is essentially the multivariate normal density function (MVN( µEQ , ΣEQ)).  Specifically, for a vector of

discriminants x , if
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Figure 1.  Fabricated model for discriminants X  and Y  and correlation and no-correlation based decision
rules.



is close to zero, then the data x  indicate outlier, otherwise earthquake.  Here, µEQ  and ΣEQ  are estimated with the

calibration data, thus establishing the outlier rule for future events.  The term close to zero  is defined by a critical
value ξ  that serves as a point of reference for evaluated values of fX x( ) , and is determined by the tolerable false-
outlier rate α .  If µEQ  and ΣEQ  are assumed known and x  is a vector of p variables then

P f

P
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x x
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The random variable ( ) ( )x x− ′ −µ Σ µEQ EQEQ
-1  follows a chi-squared distribution with p degrees of freedom

(Rencher 1998, Theorem 2.2F), thus
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Figure 2.  Likelihood-based outlier rule.  The rule is illustrated in two dimensions with discriminants x1

and x2 .  The rule is easily extended to p dimensions with a p dimensional likelihood function.



where F x
pχ 2 ( )  is the chi-squared cumulative distribution function with p degrees of freedom.  To determine the

value of ξ  we solve for ξ  in the equation P f F
p

X x( ) ln(<( ) = − −

 =ξ ξ π αχ1 2 22 ΣEQ .  Thus an outlier rule

based on fX x( )  is equivalent to an outlier rule based on ( ) ( )x x− ′ −µ Σ µEQ EQEQ
-1 .  The outlier rule fX x( ) , in two

dimensions, is illustrated in Figure 2.  Note that this rule is a one-sided test.  In this paper, we use an outlier rule
based on Equation 3 and illustrated in Figure 2.

RIDGE DISCRIMINATION AND REGULARIZED DISCRIMINANT ANALYSIS
The optimal regional discrimination method needs to be stable, robust and simple, and it should have a well-
grounded physical basis.  As regional seismic research continues, an optimal regional discrimination method will be
developed.  Ultimately, that method may use only two or three features from a seismic wave.  What is currently
desirable is a technique that properly aggregates all available seismic information from a suite of phase
measurements.  Classical discrimination does this because it is essentially based on the formation of a likelihood
ratio, and statistical likelihood functions can properly combine phase amplitudes.

In the Gaussian case, the likelihood requires a covariance matrix of the phase amplitudes, and as discussed above
these phase amplitudes may be strongly correlated.  This will lead to a near singular covariance matrix that in turn
will give a likelihood function with unstable statistical properties.  There has been some very useful research on this
problem within the statistics community (see Smidt and McDonald 1976; DiPillo 1976, 1977, and 1979; Randles et
al. 1978; Loh 1995,1997; and Campbell 1980).  In general terms, this research studied the utility of a ridge
adjustment to the covariance matrix in discrimination analysis.  Aki and Richards (1980) describe this type of
adjustment as the stochastic inverse in seismological inverse problems.  This adjustment is also similar to damped
least squares (Aki and Richards 1980).  In the statistical literature this approach is known as ridge discrimination.  In
a preliminary study, we have embedded these ideas into the event source elimination approach to regional
discrimination.  Our initial studies have produced some positive results.

Ridge Discrimination
Ridge discrimination was proposed as a method of addressing the problem of near-singular covariance matrices in
Gaussian linear (LDA) and quadratic (QDA) discrimination.  In ridge discrimination, the covariance matrix of the
kth group, used in a LDA or QDA application, is an additive combination of the sample covariance and the identity
matrix.  The weighting in this addition is governed by a smoothing parameter λ .  A common λ  is used across all
groups.  Formally, the ridge discrimination covariance matrix for the kth group is

Σk ( ) ( )
( )

[ , ]λ λ λ λ= − + ∈1 0 1S
S

I ;k
ktr

p
. (4)

Here, tr( )Sk  is the trace of the sample covariance matrix Sk  and p  is the dimension of the amplitude vector.  The
covariance matrix Σk ( )λ  is essentially formed by adding a λ  proportion of the average eigenvalue of Sk  to the
diagonal elements of Sk .  Equation 4 is equivalent to Equation 12.132 in Aki and Richards (1980) with ε  (Aki and
Richards) and λ  playing analogous roles.

As a preliminary study of this approach, we have performed a leave-one-out Monte Carlo outlier analysis with
highly correlated regional discriminant data. This type of Monte Carlo study can also be used to select optimal
features for outlier detection.  First, we fix a value of λ .  With n earthquake events, a leave-one-out cross-validation
involves n steps. For step i, the ith event was removed from the earthquake data.  This event was used as the test case
and all other earthquake data were used to construct the covariance SEQ and the mean xEQ .  We then construct the

covariance ΣEQ ( )λ .  The SEQ and xEQare then used to generate a large number of simulated discriminants, and for

each simulated data point we evaluate the multivariate normal (MVN) density using ΣEQ ( )λ and xEQ  (i.e.,

MVN( xEQ , ΣEQ ( )λ )).  We need to do this because we use the MVN(µEQ , ΣEQ ( )λ ) density as the outlier rule and

these simulated data can be used to define a critical value ξ  for the rule. The value ξ  serves as the critical value to
classify an event as earthquake or outlier.  In our study, we use the 5th percentile (α =0.05) of the
MVN( xEQ , ΣEQ ( )λ ) density values, gotten from the simulated discriminants, for the critical value ξ .



If the MVN( xEQ , ΣEQ ( )λ ) density is greater than ξ , when evaluated with discriminants from an unknown event,

then we would conclude the event is an earthquake.  If the MVN( xEQ , ΣEQ ( )λ ) density is smaller then ξ , then the

data are in the extreme regions of the density support and we would call the event an outlier.  We evaluate the test
case with this rule.  Repeating this process for all n of the earthquake data gives a leave-one-out cross-validated
error rate for the fixed λ  value.  We then fix another value of λ  and repeat the cross-validation analysis.

The data used in this preliminary study consist of amplitudes of Pn, Pg, Sn and Lg taken in seven different
frequency bands and corrected for source and propagation effects (see Taylor et al. 1999).  The data consist of 412
earthquakes and 4 explosions.  For each source, the data are normalized to the low frequency Lg.

Four sets of seven amplitudes are analyzed in this paper.  The seven amplitudes were selected from the twenty-seven
amplitudes (28-1=27, low frequency Lg was used to normalize the amplitudes).  Additionally this data set has four
explosions that were used as test cases in all of the steps of the cross-validation study.  In our study, we compute a
cross-validated false-outlier rate; however, we cannot reasonably estimate a missed-explosion rate because we have
only the four explosions.

We have noted that a very small value of λ  can be used to get a covariance ΣEQ ( )λ  with an acceptable condition

number (ratio of max to min eigenvalues).  In Figure 3, we summarize the distribution of the test values fX x( )  with
trade-off plots.  The ordinate is the 5th percentile of fX x( )  evaluated at each test amplitude data point and the
abscissa is the interquartile range (IQR) of fX x( ) .  Each point is labeled with its corresponding λ  value.  Because
all of the test values are computed from earthquake amplitudes, we want a distribution of test values that will
optimally indicate earthquake.  In terms of the trade-off plots in Figure 3, we want the 5th percentile of the outlier
test statistic, fX x( ) , to be as large as possible.  Note that a small increase in the value of λ  from zero generally
decreases the IQR and increases the 5th percentile up to an optimum.  These are desirable distributional properties
because these two features indicate that the distribution is shifting away from zero and the variability of the
distribution is decreasing.  This property is further illustrated with fabricated boxplots in Figure 4, and a summary
plot with regional data in Figure 5.  Eventually the λ  values cause the 5th percentile to move toward zero with a
continued mild decrease in the IQR.  Again, this is not desirable because small test values indicate outlier.  The main
points in this discussion are that a mild increase in λ  away from zero will give a covariance ΣEQ ( )λ  with an

acceptable condition number, and that there is an optimal value of λ  that gives test value ( fX x( ) ) distribution
properties that minimize false-outlier rates.  As shown in Figure 5, for an optimal λ , the ability to detect the
explosions as outliers to the earthquake population is excellent.  Thus in this preliminary study, we have observed
that λ  can have an optimal value that achieves, in the mean square error sense, a minimal false-outlier rate.  Other
research in support of this observation can be found in Peck et al. (1988).  These methods show promise as a way to
address the problem of high correlation among seismic discrimination measurements.  Ridge discrimination is
especially appealing when it is generalized to regularized discrimination analysis.
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with a continued mild decrease in the IQR.  The shaded region represents the critical region that
defines outlier.



Regularized Discrimination Analysis
Regularized discrimination analysis (RDA) was proposed by Friedman (1989) as a method of discrimination to
address applications with highly correlated discriminants and small training samples for some classification groups.
Friedman s generalization of ridge discrimination involves the construction of a weighted-average covariance matrix

S S S ; [0,1]k k( ) ( )γ γ γ γ= − + ∈1 . (5)

Here, Sk  is the computed covariance matrix for kth group, and S  is the pooled covariance matrix.  Note that Sk  may
be singular due to a small number of training data or strongly correlated variables for the kth group. Sk ( )γ = 0  is
computed from the kth group data alone (QDA) and Sk ( )γ =1  is a pooled covariance (LDA).  RDA uses a two-
parameter formulation of a covariance matrix in forming discrimination rules.  With Sk ( )γ  defined above, the RDA
covariance matrix is

Σk ( , ) ( ) ( )
( ( ))λ γ λ γ λ γ λ γ= − + ∈ ∈1 S
S

I ; [0,1], [0,1]k
ktr

p
. (6)

Note that this is simply the ridge discrimination formulation with Sk  replaced by Sk ( )γ .  Here, λ  and γ  are the
same values across all groups.  Higbee s (1994) generalization allows λ  and γ  to change from group to group.

RDA theory can potentially be integrated into an outlier analysis approach to event identification or used as a
classical seismic discrimination method.  For outlier analysis, pooling ( S) could potentially occur across seismic
stations within a geophysically homogeneous region.  Here, each station may have observed a small number of
seismic events.  An RDA type covariance would be constructed for each station (Equation 6).  We are researching
techniques of optimally choosing values for λ  and γ  for Σk ( , )λ γ  when only earthquake data are available.

There are some very appealing features of RDA.  As noted in Friedman (1989), RDA reduces to quadratic
discrimination for values of λ = 0 , and γ = 0 .  For λ = 0 , and γ =1 RDA reduces to linear discrimination.  Other
extremes in the RDA parameters give nearest neighbor and weighted nearest neighbor type discrimination methods.
In the nearest neighbor case, λ =1, and γ =1 which gives Σk ( , ) ( )1 1 = tr pS I = Iω , ω  a constant.  For the
weighted nearest neighbor case, λ =1, and γ = 0  which gives Σk ( , ) ( )1 0 = tr p kS I = Ik ω , ωk  a constant.  In both
of these cases, the discrimination function is based on Euclidean distance rather than Mahalanobis distance.
However in the weighted nearest neighbor case the kth term in the discrimination function, corresponding to the kth

group, is weighted with ωk .  These observations are summarized in Figure 6.  RDA also addresses some of the
inadequacies with QDA.  In particular, QDA usually requires larger sample sizes than LDA and is quite sensitive to
model violations (Friedman 1989).

RDA provides a rich and adaptable family of discrimination methods that appear to be very applicable to the
regional seismic problem.  RDA readily provides a statistical framework to use MDAC amplitudes (see Taylor et al.
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1999) in regional seismic discrimination.  We also note that the Σk ( , )λ γ  can be used as the covariance matrix in
negative evidence methods (Anderson et al. 1999).  In fact, RDA can be the foundation for any enhanced
discrimination framework that is based on the use of statistical likelihood functions.  For the classical discrimination
problem (calibration data for all seismic sources), optimal values of λ , and γ  are identified with cross-validated
error rates.  The details of this procedure can be found in Friedman (1989).

CONCLUSIONS AND FURTHER DEVELOPMENTS
We have illustrated the importance of properly modeling the correlation structure of seismic measurements in the
seismic event identification problem.  If this correlation is not captured in the mathematics of a discrimination
method, then both false-alarm and missed-explosion rates can be aggravated.  Empirically we have noted that the
false-alarm errors can be seriously increased when discriminant correlations are not properly modeled.  In the
regional discrimination problem, seismic measurements will be strongly correlated (e.g., Lg spectra may be
contaminated by Sn coda and amplitudes may be constructed with frequency bands that overlap).  This poses
another problem in that an estimate of a covariance matrix for these measurements will be near singular.  The true,
unknown covariance matrix is itself near singular.  Ridge discrimination and its generalization, RDA, provide a
statistical method that can perform well in the presence of highly correlated seismic measurements.  These methods
properly combine measurements through a covariance matrix and are mathematically adaptable to a variety of
regional seismic identification settings.  We believe that regularized discrimination provides a reasonable solution to
the regional discrimination problem and provides the flexibility to adapt to a future maturation of seismic event
identification.

If an outlier detection algorithm is based on the use of statistical likelihood functions, then in an operational setting,
missing data may be accounted for using detection thresholds with negative evidence methods (Anderson et al.
1999).  However, outlier detectors are constructed with ground truth earthquake data, which can have left-censored
data due to poor signal-to-noise, particularly at high frequencies.  Woodward et.al (1999) show the utility of filling
missing ground truth earthquake data with the EM algorithm with a marked decrease in error rates. Anderson and
Phillips (1999) have developed an approach to incorporate censoring thresholds associated with missing spatial data
into Kriging parameter estimates.  We are adapting the work of Woodward et.al (1999) and Anderson and Phillips
(1999) to the outlier detector approach presented in this paper.  In particular, future developments include;

•  the development of methods to incorporate amplitude censoring thresholds into the EM algorithm to fill missing
earthquake training data,

•  the development of a method of optimally choosing the RDA parameters λ  and γ  using only earthquake
training data (RDA concepts integrated into outlier analysis),

•  the comparison of optimal λ  and γ  determined with explosion and earthquake training data with optimal λ
and γ  determined only with earthquake training data.
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Figure 6. The relationship between regularized discrimination analysis (RDA) and some other
classical discrimination methods.
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