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ABSTRACT 
 
One component of nuclear explosion monitoring (NEM) research and engineering (R&E) is directed at the 
development of mathematical techniques that take full advantage of all information in a seismic signal.  
Regularized Discrimination Analysis (RDA) is a multivariate seismic event identification method that can be 
applied to a number of highly correlated regional discriminants.  The parametric formulation of RDA includes 
Linear Discrimination (LDA), Quadratic discrimination (QDA) and Euclidean distance-based nearest-neighbor 
discrimination.  We present methods to optimally select RDA parameters. 
 
Error propagation is another focus area in the NNSA NEM R&E program.  The detection and timing of seismic 
arrivals play a critical role in the ability to locate seismic events, especially at low magnitude. Errors can occur 
with the determination of the timing of the arrivals, whether these errors are made by automated processing or 
by an analyst. One of the major obstacles encountered in properly estimating travel-time picking error is the 
lack of a clear and comprehensive discussion of all of the factors that influence phase picks.  We have 
developed a multivariate statistical model, experimental design, and analysis strategy that can be used in this 
study. We have embedded a general form of the International Data Centre (IDC)/U.S. National Data Center 
(USNDC) phase pick measurement error model into our statistical model. We can use this statistical model to 
optimally calibrate a picking error model to regional data. 
 
We also present work on the development of statistical methodologies for comparing effects of station-specific 
correction surfaces on predicted seismic event locations and event location uncertainty from network model 
Monte Carlo simulation runs.  Research and development work includes the investigation of Latin Hypercube 
Sampling (LHS) to design Monte Carlo simulation runs, the development of appropriate statistical models to 
describe travel-time correction surface errors, and the proper simulation of errors in phase identification and 
association processes.  Also under investigation are statistics-based methods for visualizing and assessing 
differences between event locations and location uncertainty from different correction surfaces in network 
model simulations.    
 
KEY WORDS:  seismic identification, phase pick errors, error propagation, seismic network model simulation, 
surface correction assessment, event location. 

 
OBJECTIVE 
 
The objectives of the PNNL statistics effort are to 
• contribute to the development of optimal regional discrimination techniques that properly account for 

uncertainties in seismic signal processing, and 
• develop efficient statistical metrics and visualization methods to measure or assess the improvement of 

location accuracy and precision as predicted using Monte Carlo network simulation that result from 
changes to velocity/travel-time calibration correction surfaces. 
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RESEARCH ACCOMPLISHED 
 
Regional Discrimination 
 
Ridge Discrimination techniques, first proposed by Smidt and McDonald (1976), were developed to address the 
problems associated with discrimination in high-dimension, co-linear settings. These methods are readily 
adaptable to linear, quadratic and outlier identification rules. Ridge Discrimination is a special case of 
Regularized Discrimination Analysis (RDA) developed by Friedman (1989). RDA includes LDA; QDA and 
Euclidean distance-based nearest-neighbor discrimination in its parameterization. These techniques can be used 
to transition from an outlier analysis approach for seismic identification to classical discrimination, as quality 
explosion calibration data are collected. Ridge Discrimination and RDA provide the statistical structure to 
model highly correlated seismic measurements. Omitting the correlation structure between seismic 
measurements in event identification can aggravate identification errors and give an erroneous impression of 
capability. With RDA, a large number of discriminants can be used and no a priori sub-selection of 
discriminants is necessary. We propose an information theory approach to the optimal selection of RDA 
parameters.  These methods are based in the Kullback divergence index. Complete details of the proposed 
methods were submitted to the Bulletin of the Seismological Society of America for formal publication. 
 
Explorations in Assessing Calibration Surfaces through Seismic Network Simulation 
 
Background.  For purposes of nuclear explosion monitoring, it is desirable to continuously improve calibration 
travel-time/velocity corrections in order to produce more accurate and precise predicted seismic event 
epicenters versus ground truth.  Improvement may be expressed as reduction of the distance between the 
predicted epicenter and the true event epicenter, and also as reduction in the epicenter uncertainty taken as the 
area of the confidence ellipsoid area (CEA).  Comparisons may be absolute, when ground truth is present and 
well understood, or comparisons may also be relative in the sense of comparing alternative correction surfaces.   
 
Locating seismic events with depth depends on at least three receiving stations detecting at least four phases 
associated with the same event.  Through iterative application of triangulation algorithms with an overall global 
velocity model and velocity or travel-time correction surfaces, the event can be positioned geographically and 
depth-wise within a small region (Sleep & Fujita, 1997).  Seismic event locations are often expressed as a 
predicted epicenter surrounded by a 90% CEA.  Methods for performing event location calculations are well 
documented (e.g., Bratt & Bache, 1988) 
 
Network Simulation Models.  One approach toward comparative assessment of correction surfaces is to use 
network simulation models such as NetSim (Sereno, Bratt, and Yee, 1990; Sereno, 1991) and its follow-on 
systems to generate simulated locations of synthetic events.  Network simulation models are computer codes, 
which generate simulated phases at specific frequencies to express seismic events of specified magnitude and 
depth.  They then model the propagation of these phases through the earth by applying specified velocity and 
travel-time correction surfaces, and model each receiving station's reception in the presence of local noise.  This 
includes simulating the phase-picking process.  Simulations may also account for station up-time reliability and 
local station signal-to-noise conditions.  Once the simulated phases are detected and arrival times and perhaps 
bearings calculated, these systems solve for the predicted epicenter, depth, magnitude, and other parameters of 
interest.  Since the input correction surfaces, noise models, and other factors are known only with uncertainty, it 
is current practice to generate random samples of inputs through Monte Carlo experiments to introduce 
uncertainty into various stages of the detection and location processes, perhaps through Latin HyperCube 
Sampling (McKay, Conover, and Beckman, 1979).   
 
A very important principle in seismic network simulation is to consistently form realistic events in tune with 
sound geophysical science.  From the viewpoint of event location, this implies that for any particular event, the 
simulation has the capability to select receiving stations in accordance with sound seismological practice.  It 
needs to make reasonable decisions as to whether a particular simulated event is solvable in terms of parameters 
of interest.  Consequently, it is useful to include criteria for deciding whether a particular data set represents 
events typically formed by standard practice. It is also critical that estimates of uncertainty for input variables be 
realistic. 
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Azimuthal Gap Patterns to Assess Potential for Obtaining Stable Event Locations.  One way to determine 
whether an event is well located is to consider the distribution of azimuthal gaps around an event formed by the 
pattern of detecting stations.  These are measures of the arcs between the bearings from the event-node to each 
station.  A poorly located event, difficult to triangulate, may have a very large maximum azimuthal gap, greater 
than 250 or so degrees.  A large maximum azimuthal gap indicates that all stations that detect the event have 
bearings in one quadrant around the event, thereby controlling location in only one direction.  Another way to 
obtain a poorly located event is that all detecting stations have bearings in two opposite quadrants around the 
event such that the two largest azimuthal gaps be of the order of 150 degrees, so that location is still controlled 
in only one direction.  For good location results, ideally the station bearings are distributed such that location is 
controlled from several directions, thereby allowing the most effective triangulation.  Azimuthal gaps may be 
less useful when bearings as well as travel times are used to solve for the epicenter. 
 
Assessing Changes in Event Location and Uncertainty from Two Simulation Runs.  Two issues are comparison 
metrics and representative event sampling for performing assessments. 
 
The goal for comparison metrics is to define measurements or counts which express change in detection 
accuracy and/or precision for events simulated at given grid nodes, individually and ensemble.  Assessing 
accuracy pertains to measuring differences between estimated and input epicenters.  Assessing precision 
pertains to measuring differences between confidence ellipsoid areas, and perhaps ellipsoidal shapes and 
orientations (strikes) as well. 
 
With regard to sampling, it is desirable to simulate events and detections in regions and with station networks 
associated with the calibrations under consideration.  Moreover, since discrete regions of the globe may behave 
seismically in unique ways, tectonic provinces, surface roughness, and other geological characteristics also need 
to be considered (Ryaboy, 2000; Zhang, Lay, Schwartz, & Walter, 1996). This results in a need for sampling 
from the set of events, locations, and event-station pairs so that the results have minimal sampling biases, which 
could lead to false conclusions about the calibration surfaces.  
 
To this end, the following grouping (or stratification) of events on the event-node grid is suggested.  In some 
cases, the event grid-nodes only form study groups; in other cases the combinations of event grid-nodes and 
receiving stations taken together form study groups. 
 
• Events chosen from inside or outside the convex hull of the station network 
• Events chosen by surface topography or land areas versus oceanic 
• Event-location/station subsets grouped into geophysically homogeneous regions such as tectonic provinces 

with regard to propagation path  
• Event-location/station subsets grouped into regions where calibrations are changed vis a vis calibrations 

remain unchanged (control versus experimental regions) 
 
Although the prime focus of a calibration improvement study would be to assess differences, the study might be 
more valuable if a control region is also available.  A control region is a region with no calibration changes over 
propagation paths to a subset of stations, such that changes in predicted epicenters are not expected from the 
two runs.  If changes are detected in a control region, contrary to expectations, this requires special evaluation, 
because it may mean the simulations were not working as expected. 
 
Numerical Stability in Computations to Solve for Location.  The event location process depends on solving the 
triangulation equations, which estimate the epicenter.  These equations (Bratt & Bache, 1988) are often solved 
by maximum likelihood for the set of travel times, which jointly minimize residuals.  In addition, some 
formulations also allow for inclusion of bearings from station to postulated event.  This process of associating 
travel times (P-wave picks in time) to an event also has inherent uncertainty (and the possibility of 
misassociating picks from different events is not presently modeled).  If the equations are well posed, the 
solution converges rapidly to a minimum-error solution, and the eigenvalues for the resulting covariance matrix 
(expressed as major and minor confidence ellipsoid axes) are such that the ellipse is not far from round.  For the 
poorly posed cases, the equations are numerically unstable, the eigenvalues are grossly unequal, and the major 
and minor axes are also quite unequal.  To obtain reliable results, it is critical to identify the cases that will not 
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or did not converge to a reliable solution.  This information can assist in understanding why the location process 
failed. 
 
Three Approaches toward Comparing Results from Network Simulation Runs: ensemble, paired event-node, 
and paired events. 
 
Ensemble analysis: The network simulation model is run N times (N large) and means, variances, and 
skewnesses are collected for key variables such as CEA and predicted epicenters at each event grid-node.  Then, 
assessments of differences between two simulation runs are based on comparing distributions for the key 
variables expressed as means and variances at each event-node, without pairing.   
 
Analysis on individual event grid-node pairs: The network simulation model is run N times at each event-node, 
same as above. The data at each event-node from the two calibrations are paired.  The random number generator 
is not coordinated between the two runs so there is no control over calculation starting points.  Assessment is 
performed based on the ensemble of mean differences between each event-node pair.  The basic statistical test is 
the two-sample t-test at each event node to compare distributions of differences between pairs.  Pairing event-
nodes is a more powerful statistical test than comparing overall distributions in ensemble analysis. 
 
Individual events at event-node pairs: The network simulation model is run N times, and data are collected for 
each individual event realization. Ideally, the random number generator is coordinated between the two runs so 
that results from each calibration for individual simulated events form pairs that can be directly compared, with 
all things equal except the experimental variables (calibrations).  Assessment is performed based on the 
ensemble of individual event differences between the two calibration runs.  The statistical test is the paired t-test 
at each event-node.  Because the paired t-test is the most powerful statistical test in this situation, fewer 
simulation runs are needed to detect a given difference when individual simulated events are paired.  One 
drawback with applying this approach is the nontrivial problem of coordinating the random number generator 
so that each simulated event has in effect the same starting point. 
  
A Collection of Analysis Tools for Assessing Difference Between Two Runs.  Two potential primary measures 
for assessing performance in locating simulated events are CEA and offset from CEA centroid to true location.  
The following lists of plots and tables is based on analysis and visualization of these two measures and related 
input parameters.  It is not in any way complete. 
 
Table 1. Displays showing differences or "movement" in primary measures for events.  These may be 

expressed in terms of change in measured values or as percent change in measured values. 
Item to Plot/Tabulate What It Shows/Interpretation 
Change in mean CEA Improvement in location precision 
Change in Relative Standard Deviation Display variability in CEAs, a measure of stability 
t-test statistics or alpha probabilities Displays statistically significant changes 
Percent of events below 1000 km2 Associated with external criterion for a "good" event 
Major/Minor axis ratio Expresses stability in detecting station configuration 
Change in Offset Shows whether predicted events from new calibrations are 

closer to true location 
Percent of CEAs actually covering true 
event locations 

Gross measure of accuracy 

 
Table 2. Secondary Measures involving counts of events satisfying various criteria 

Item to Plot What it Shows/Interpretation 
Proportion of well-located events to 
total events 

Provides an idea of quality of station coverage 

Proportion of events which have low 
(good) covariance matrix condition 
numbers 

Provides an idea of quality of numerical processing, and 
ultimately station coverage.  (This is expected to be high)  

Coverage: proportion of events 
inside convex hull of stations 

Provides an idea of quality of station coverage 
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Figure 1: Plotting mean 90% confidence ellipsoid 
areas at each event-node against the largest and 
second-largest azimuthal gaps based on the nine 
closest stations for calibrations of CALIB1 and 
CALIB2.  These are theoretical, not based on 
detections.  Although large CEAs are found 
throughout, the largest CEAs are most likely found 
where the maximal azimuthal gap > 250o.    

 
Figure 2: Plotting mean 90% confidence 
ellipsoid areas geographically at with the station 
network shown based on CALIB1 and CALIB2.   
The largest CEAs lie outside or on the edge of  
the station convex hull, where maximum 
azimuthal gap is expected to be largest.  CEAs 
(shown in log10 scale) range from ~50 km2 to over 
250,000 km2. 
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Figure 3: Summary histogram plots of differences 
between mean 90% CEAs from CALIB1, a 
baseline calibration and CALIB2, a new 
calibration.  These plots allow assessment of 
"movement" of sets of CEAs.  In this case, fully 
half the data set of mean CEA's decreased in size 
by at least 24.3% as a result of new calibrations.  
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Figure 4:  Tabulating the "movement" of mean 
90% CEAs across the 1000 km2 threshold from 
estimates from two calibration surfaces. In this 
case, there were 592 instances in which the CEA 
for CALIB1 was initially > 1000 km2 and with 
CALIB2 became small enough to cross the 
threshold.  There were 15 instances in which 
CEAs initially smaller than the threshold were 
made larger as a result of CALIB2.   
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Materials and Methods for Generating Data.  The CAT network simulation model was used to generate case 
study data for the plots shown in this report applying two calibrations here termed CALIB1 and CALIB2, with 
the goal of determining whether CALIB2 gives more precise results than CALIB1.  The data shown are based 
on 4.25 mb event magnitude calibration runs.  The confidence ellipsoid areas are means of N=1000 realizations 
per event-node.   Also available were corresponding standard deviations of CEAs. 
 
Discussion.  Figure 1 illistrates how the two largest theoretical azimuthal gaps seem to be associated with larger 
mean 90% CEAs, at least for this case.  Figure 2 plots the same set of  CEAs geospatially; and illustrates how 
the larger CEAs lie outside the convex hull of stations, where station coverage is less optimal.  These two plots 
together illustrate a way to demonstrate relative station coverage over a region of interest.  Figure 3 presents an 
ensemble of event-pair differences between mean CEA estimates at each event-node from two calibrations 
applied in pre-test/post-test order.  Both absolute differences and percent difference relative to CEAs from the 
pre-test calibrations are shown with summary statistics.  In this case, almost 88% of the event-nodes show 
decreases in mean CEA.  Regions with increases in CEA as a result of applying calibrations can be pinpointed 
by appropriate geospatial plots.   Figure 4 analyses changes in mean 90% CEAs as a result of applying the two 
calibrations in pre-test/post-test order.  Here the statistic of interest is the proportion of mean  CEAs from the 
ensemble of event-nodes crossing (becoming larger or smaller than) 1,000-km2 90% CEA threshold.    
 
Any of  these displays can be partitioned into subsets, either based on a priori stratification, or a posteriori 
observation, in order to explore fine-structure of response to calibrations.  Examples are events in different 
geographic regions, or events detected by certain stations, or events-station pairs for which seismic travel paths 
cover certain regions of interest in order to explore fine-structure of response to calibrations. 
 
In regions without good station coverage or well-known velocity structure, it is more difficult to obtain accurate 
regional event locations.  Moreover, the standard CEA may lead to an impression of more accurate event 
location than actually is the case (Kadinsky-Cade et al., 1995).  Much depends on the choice of appropriate 
phases for given regions, as well as reliability in detecting and picking phases.  Seismic event location is 
complicated by the presence of uncertainty.  Many of the inputs are simply not well known, and are subject to 
quasi-random processes, which means that sometimes events will be detected, sometimes not.  Sometimes 
enough stations detect the event to allow triangulating an event location, sometimes not.  The degree to which 
the signal is visible above noise may also be random, and the weaker the signal, the more uncertain will be the 
predicted location.  To consider the impact of these uncertainties is one reason to perform network simulations 
with Monte Carlo techniques. 
 
Uncertainty in Regional Phase Picks 
 
The detection and timing of seismic arrivals play a critical role in the ability to locate seismic events, especially 
at low magnitude. Errors can occur with the determination of the timing of the arrivals, whether these errors are 
made by automated processing or by an analyst. One of the major obstacles encountered in properly estimating 
travel-time picking error is the lack of a clear and comprehensive discussion of all of the factors that influence 
phase picks. We have developed a multivariate statistical model, experimental design, and analysis strategy that 
can be used to study possible factors that need to be modeled to properly study phase arrival time picking errors. 
We have embedded a general form of the International Data Centre (IDC)/U.S. National Data Center (USNDC) 
phase-pick measurement error model into our statistical model. We can use this statistical model to optimally 
calibrate a picking error model to regional data.  
 
CONCLUSIONS AND RECOMMENDATIONS 
 
A sampling of statistical and visualization tools for comparing simulation results from two calibrations is briefly 
described.  These tools can be based both on primary measures directly output by the simulation runs, or based 
on counts of categorized input or variables.  To obtain reliable results, it is critical that computed results are 
obtained through numerically stable computations, that appropriate stratification has been applied, either 
regionally or by other variables of interest, to avoid sampling biases, and that realistic uncertainties are applied 
to inputs to Monte Carlo runs.  The most powerful statistical tests are tests based on pairs of event grid-nodes 
and on pairs of individual event realization from the two calibrations, if all other factors are equal.   
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