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ABSTRACT 
 
Uncertainty in event locations derived from seismic data is caused by errors in the arrival times of picked 
phases, misidentification of seismic phases, and errors in the travel-time model used in the location process.  
The event mislocation induced by these error sources is affected by the number and spatial distribution of 
stations that record an event.  This project is developing a statistical framework and computational techniques 
for accurately analyzing event location uncertainty.  Our statistical approach is based on a maximum-likelihood 
framework, which defines an optimal location estimate to be that maximizing a likelihood function, and derives 
confidence regions in terms of hypothesis tests applied to likelihood ratios.  An appropriate likelihood function 
is prescribed in terms of a probabilistic model of the various types of errors in seismic data.  With appropriate 
computational tools, it is possible to implement a general class of error models that allow for non-Gaussian 
distributions, spatially correlated errors in travel-time tables, and other complexities that conventional location 
algorithms do not handle.  Additionally, the assumption of local linearity of the forward problem (travel-time 
vs. location) can be avoided.  We are developing such computational tools based on grid-search and Monte-
Carlo simulation techniques.  We have implemented our statistical formulation in a general event location 
algorithm that finds optimal location estimates from arrival time, slowness and azimuth measurements for 
regional and teleseismic phases, and computes the non-elliptical confidence regions which follow from a 
general error model and nonlinear analysis.  We have used the algorithm to study the effects of nonlinearity and 
non-Gaussian error assumptions on the confidence regions of sparsely recorded events, applying it to regional 
arrival data from the 1991 Racha earthquake sequence, data from local and national networks in Turkey, and 
from the Reviewed Event Bulletin of the International Data Centre.  Our present efforts focus on developing a 
realistic and practical formulation of the errors in the travel-time tables that are used in locating events 
(“modeling errors”).  We are basing our formulation on empirical methods for estimating travel-time 
corrections from multiple-event data sets, with the goal of deriving location confidence regions that properly 
reflect the results of network calibration studies. 
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OBJECTIVE 
 
The objective of this work is to develop a methodology for seismic event location that provides reliable 
estimates of location uncertainty that can be used in nuclear event monitoring.  Conventional methods for 
inferring confidence regions on event locations employ assumptions that may not be valid in the case of small, 
sparsely recorded events.  These assumptions include local linearity of the travel time vs. hypocenter forward 
model and the treatment of errors in arrival time picks and travel-time models as uncorrelated, Gaussian random 
variables.  The linear approximations used in computing standard, elliptically shaped confidence regions are 
only appropriate when the “true” confidence region for an event is small compared to the distances to stations, 
and does not include large velocity variations.  Gaussian error models do not capture the observational 
difficulties of correctly identifying and picking low signal-to-noise arrivals (Jeffreys, 1932).  Further, they are 
an ad hoc representation of what is often a larger source of error: the errors in the travel-time tables used in 
locating an event.  We are attempting to address these difficulties by developing a general theoretical 
framework and computational tools for uncertainty analysis in seismic event location. 
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RESEARCH ACCOMPLISHED 
 
Theoretical Formulation 
 
Our approach to seismic event location is based on a maximum-likelihood formulation.  We define an optimal 
location for a seismic event to be that which maximizes a likelihood function, constructed on the basis of an 
assumed statistical model of errors in the seismic data used in locating the event.  Confidence regions are 
defined in terms of hypothesis tests using likelihood ratios as the test statistics.  We have formulated and 
implemented this approach for three types of seismic data used in nuclear monitoring: arrival times, azimuths 
and slownesses.  To simplify the discussion here, we consider only arrival times. 
 
The hypocentral parameters of a seismic event are an origin time t and location x ≡ (θ, φ, z), where θ  is latitude, 
φ is longitude and z is depth.  Let d = (d1,d2…,dn) be an n-dimensional vector of arrival times picked from 
various seismic phases at a seismic network.  The event location problem may be expressed as  
 

di = t + Ti (x) + ci + ei,   i = 1,....,n .     (1) 
 
Ti  is a travel-time function for the ith datum, which in our algorithms is evaluated by interpolating a travel-time 
table, sampling travel-time as a function of epicentral distance and event depth (for a 1-D earth model) or as a 
function of x (for a 3-D earth model).  The term ei denotes the observational, or picking, error in di.  The term ci 
can be interpreted in two ways.  First, it is a correction to Ti(x), accounting for the difference between the travel-
time function and the true travel times in the Earth.  However, if ci is not known, it can be considered an 
additional source of error in di, and from this view it is sometimes referred to as a “modeling error.”  In our 
formulation, we assume that any known corrections have been included in Ti, leaving ci as an unknown error.  
The uncertainty analysis for the event hypocenter x must account for the combined error, ci + ei. 
 
Our current algorithms assume that the picking errors are statistically independent and, following Billings et al 
(1994), that each is distributed with an exponential power distribution, whose probability density function 
(p.d.f.) is given by 
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where the scale parameter σi is a standard error, K( p) = 2p1/ pΓ(1+1/ p) , and Γ is the gamma function. 
When p = 2, then ei is normally distributed with a mean of zero and variance of (σi)2.  When p =1, it is 
exponentially distributed.  We assume that the standard errors are known in a relative sense and write 
 
     σ i = σν i       (3) 
 
where the νi are known but the universal scale parameter, σ, is not.  For the moment, we will ignore the 
modeling errors and assume ci = 0. 
 
The joint p.d.f. of the n data is the product of the error p.d.f.'s.  Considered as a function of the unknown 
parameters (x, t, and σ) this joint p.d.f. is the likelihood function we seek to maximize.  Denoting it as  
L(x, t, σ, d) our assumptions imply 
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We denote the maximum-likelihood estimates of the unknowns as xm1, tm1,  and σm1 .  The maximization may 
be subjected to prior constraints on the parameters.  For the applications here the constraints of interest are 
     0 ≤ z ≤ z max      (5) 
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           σ min ≤ z ≤ σ max.      (6) 
 
From the point of view of finding x and t, maximizing L is equivalent to minimizing the last term of equation 
(4), which is just a norm of data residuals.  For example, with p = 2 the problem reduces to nonlinear least 
squares.  However, with error models more general than we consider here, allowing for example asymmetric or 
multi-modal error distributions, the likelihood function would not necessarily be in terms of a simple residual 
norm. 
 
Given its structure, L is amenable to a hierarchical maximization with respect to the unknown parameters.  We 
define a “reduced” likelihood function which, for each fixed hypocenter, is minimum with respect to t and σ 
(subject to prior constraints on σ): 
     L    (7) ˜ (x;d) =  max

t,σ
L(x, t,σ ; d).

 
For general p ≥ 1, this maximization over t and σ can be performed with a combination of analytical and root-
finding techniques.  The location problem reduces to maximization of   with respect to x. ˜ L
 
Grid Search 
 
Our grid search algorithm computes the reduced likelihood function,  in equation (7), at each point in a 3-D 
grid of hypocenters.  Following previous workers, the hypocenter grid is constructed dynamically through a 
process of successive refinement.  Our procedure for grid refinement resembles that of the “neighborhood” 
search algorithm developed by Sambridge (1999).  If the search is not restricted to a specified region, the first 
grid covers the entire globe and 0 to 700 km in depth at a coarse spacing: 100 km in depth, 9° in latitude, and 9° 
in longitude near the equator and increasing at higher latitudes.  On each pass of grid refinement, nodes are 
added as neighbors of a subset of grid points comprising the “best” (largest ) points tested thus far.  
Neighbors are placed at one-third the grid-spacing of the previous pass.  The size of the grid subset chosen for 
refinement is reduced on each pass.  The search ends when the grid spacing is less than 0.3 km. 

˜ L 

˜ L 

 
Non-Elliptical Confidence Regions 
 
In conventional event location algorithms, confidence regions on the hypocenter, epicenter and depth of an 
event are computed under the assumptions that the data errors are Gaussian (p = 2) and that the travel-time 
functions, Ti(x), are well approximated as locally linear near x = xml.  These assumptions lead to hypocenter and 
epicenter confidence regions that are elliptical in shape.  The size of the confidence regions, for a given 
confidence level, is scaled by a critical value of the F distribution for an appropriate number of degrees of 
freedom, as determined by a prior assumption about the data variance, σ2.  This approach is developed by Flinn 
(1965), Evernden (1969) and Jordan and Sverdrup (1981) under differing assumptions about σ2 (unknown, 
known and partially known, respectively). 
 
We have generalized this approach to avoid the linearity approximation and to allow for non-Gaussian data 
errors and arbitrary parameter constraints.  As in the conventional approach, we define a confidence region in 
terms of a test statistic, τ, which is a function of the data and parameters being tested.  For a hypocenter 
confidence region, we write the statistic as τ (d, x).  The confidence region, at confidence level β (e.g., β = 
90%), comprises those values of x that satisfy the inequality 
 
     F τ (d,x )[ ]≤ β      (8) 
 
where d is the observed data vector, and F[ ] denotes the cumulative distribution function (c.d.f.) of a random 
variable.  Following a well known statistical approach, we define the test statistic as the logarithm of a 
likelihood ratio: 

  τ (d, x) =  log ˜ L (xm1;d) − log ˜ L (x;d) =  log 
maxx,t,σ  L (x, t,σ ;d)
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That is, for given x, τ compares the difference between the maximum likelihood (achieved by xml) and the 
likelihood achieved by x.  Since the inequality (8) rejects large values of τ, confidence regions will exclude 
hypocenters that achieve relatively small values of likelihood, i.e., poor fits to the data.  We point out that under 
the Gaussian, linear assumption, the likelihood ratio statistic is equivalent to the variance ratio on which 
elliptical confidence regions are based. 
 
The statistic for a 2-D confidence region on the event epicenter, (θ ,φ) , is defined by 
 
      (10) τ (d,θ ,φ) = log ˜ L (xm1;d) − log max

z

˜ L (θ ,φ ,z;d)

 
and for a confidence interval on focal depth we use 
 

τ (d, z) = log ˜ L (xm1;d) − logmax
θ ,φ

˜ L (θ ,φ ,z;d).    (11) 

 
Confidence regions using these log-likelihood statistics could still be defined via the inequality of equation (8), 
except this inequality presumes that the distribution (c.d.f.) of τ does not depend on the true values of 
parameters that are not being tested.  To address this, we assume the main dependence is on focal depth and σ, 
and rewrite the c.d.f. of τ as F[τ;z,σ].  We generalize the inequality of equation (8) to use the c.d.f. of τ  that is 
minimum with respect to the untested parameters.  Thus, the hypocentral confidence region is given by 
 
     min

σ
F τ (d,x);z,σ[ ] ≤ β .    (12) 

The epicentral confidence region is 
     min

σ ,z
F τ (d,θ ,φ);z ,σ[ ] ≤ β     (13) 

and the focal depth confidence interval is 
     min

σ
F τ (d,z );z,σ[ ] ≤ β     (14) 

 
With these definitions, a confidence region will include the true value of the tested parameters at least 100β 
percent of the time. 
 
Confidence Regions Via Monte Carlo Sampling 
 
Without assumptions like linearity of Ti, it is not possible to derive an analytic expression for the c.d.f. of τ, 
which is needed to compute confidence regions.  However, we can approximate the c.d.f. using Monte Carlo 
simulation.  We outline the technique for hypocentral confidence regions.  The basic idea is to estimate the 
c.d.f. of the test statistic τ by simulation, i.e. computing τ for many randomly generated samples of the error 
vector.  We generate each error, e , using a pseudo-random number generator in accordance with the assumed 
error distribution [eqs. (2)−(3)] for some given “true” σ.  Then, for given true hypocentral parameters, x and t, 
synthetic data are calculated as 

i
mc

 
     .    (15) di

mc = t + Ti (x) + ei
mc

 
We apply our grid search algorithm to these data to obtain the maximum-likelihood hypocenter, .  Plugging 
this into the formula for τ, 

xm1
mc

    ,    (16) τ (dmc, x) = log ˜ L (xm1
mc;dmc) − log ˜ L (x;dmc )

 
we obtain one sample from F[τ ;z, σ].  We compare this sample to the observed value of the statistic, τ (d,x), 
obtained from the real data.  We count a rejection of x if 
 
         (17) τ (dmc, x) < τ (d, x)
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The proportion of rejections after many Monte Carlo trials yields an estimate of F τ (d,x );z,σ[ ].  Performing 
this simulation for multiple values of σ  and then minimizing amongst them gives the lowest confidence level 
such that the confidence region includes x. 
 
The process for depth confidence intervals and epicenter confidence regions proceeds in the same manner, 
except that in the latter case the simulation is performed for multiple values of true depth as well as σ , and the 
confidence level is minimized over both. 
 
Examples From the Racha and Adana Earthquake Sequences 
 
Figure 1 shows confidence regions computed for an event from the 1991 Racha, Georgia, earthquake sequence, 
studied by Myers and Schultz (2000).  The data set comprises P wave arrival times at six regional stations, 
obtained from the International Seismological Centre (ISC) with two stations re-picked by Lawrence Livermore 
National Laboratory (LLNL).  We computed confidence regions with our Monte Carlo/grid search algorithm 
two ways.  First, we assumed the picking errors are from a Gaussian distribution, with the standard deviation 
constrained between 1.0 and 2.0 seconds for the ISC picks and between 0.5 and 1.0 seconds for LLNL picks.  
Second, we assumed the errors were from an exponential distribution (p = 1), with the same constraints applied 
to the standard errors.  In both cases, we used the travel-time tables for the IASPI91 Earth model. 
 
The results in Figure 1 illustrate the effect of nonlinearity on the confidence regions of sparsely recorded events.  
Even in the Gaussian case (top), we see that the epicenter and hypocenter confidence regions depart 
significantly from ellipses.  This is due largely to the fact that the event depth is poorly constrained by first 
arrivals from only six stations covering a limited distance range (6° to 22°).  Travel time does not behave as a 
linear function over the wide range of event depths that is consistent with the data. 
 
Comparing the top and bottom portions of Figure 1, we see that the confidence regions for Gaussian and 
exponential error distributions are similar, but not identical, in shape.  More noticeable is the fact that the 
exponential ones are bigger at high levels of confidence, above 90%.  This is consistent with the larger tails of 
the exponential distribution.  However, only confidence regions at very high confidence levels, particularly in 
the Gaussian case, include the local network location.  This was generally the case for 18 Racha events we 
analyzed, all of which had six or fewer data.  For the 14 of these events whose epicenters were reasonably 
constrained, the locations were consistently mislocated by roughly 40 km north-northwest of the true location.  
These results are consistent with those of Myers and Schultz (2000), who showed that the mislocations are due 
to the need for travel-time corrections as large as 3 seconds at some stations. 
 
As further examples, Figure 2 shows confidence regions determined with Gaussian and exponential error 
assumptions for the 27 June 1998 M=6.2 Adana earthquake, and Figure 3 shows the same for its largest 
aftershock on 4 July 1998.  The data used in these examples are from the Reviewed Event Bulletin (REB) of the 
International Data Centre.  Only first arrival P times were used in our calculations, which numbered 24 for the 
mainshock and 20 for the aftershock.  For both the Gaussian and exponential error models, the standard error 
(σ) was bounded between 0.5 and 1.5 seconds. 
 
In the case of Gaussian errors (top of Figures 2 and 3) we do not see strong non-ellipticity of the confidence 
regions because the confidence regions are small compared to the distances to the stations, and they are 
contained mainly in the upper mantle where there are no large velocity contrasts (in the IASPI91 model).  
Despite these factors, though, there is noticeable departure of the confidence regions from ellipses in the case of 
exponentially distributed errors (bottom of figures). 
 
Once again, only confidence regions at high confidence levels cover the true locations of the Adana events, as 
inferred from a dense local network that surrounded the events (Aktar et al, 2000).  The fact that the mislocation 
is similar (west and deep) for the two events suggests it is not due to picking errors that were anomalously large 
compared to our assumed picking accuracy, which was itself rather large (standard error of up to 1.5 seconds). 
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Modeling Errors 
 
In the examples above, reasonable assumptions about picking errors do not yield valid conclusions about the 
uncertainty in event locations.  The confidence regions do not include the true event locations except at high 
confidence levels, and the mislocation is similar for different events in the same region, suggesting a repeatable 
source of error.  Errors in travel-time models frequently exceed picking errors and, when they cannot be 
corrected, must be accounted for in the uncertainty analysis. 
 
A simple, and commonly used, way to do this is to inflate the assumed variance of the data errors, attempting 
thus to define the probability distribution of the sum of picking and modeling errors [ci + ei in equation (1)].  
This would be appropriate if modeling errors were independent between stations and seismic phases.  Another 
mechanism is to modify the shape, as well as the width, of the error distribution, e.g., manipulating p as we did 
in the examples.  However, to the extent that modeling errors are correlated between stations and phases, the 
confidence regions that result might still not be indicative of the true location error.  Ultimately, a statistical 
analysis of actual picking and modeling errors is needed to derive an appropriate error model. 
 
We are currently pursuing a formal approach to the problem by attempting to link the effects of modeling errors 
in the single event location problem to empirical calibration methods.  Such methods fit travel-time residuals 
observed from many events with parameterized corrections.  An analysis of the errors in the correction 
estimates provides the statistical model of modeling errors that we need. 
 
For example, many approaches to calibration (e.g., Dewey, 1971; Jordan and Sverdrup, 1981; Pavlis and 
Booker, 1983) assume that travel-time corrections are static at stations (i.e. independent of event location) and 
then solve the problem of jointly determining the locations of multiple events and the station corrections.  The 
problem can be posed as 
 
   dij = t j +Ti (x j ) + c i + eij ,    i = 1,....,n; j = 1,...., m    (18) 
 
for m events with origin parameters (x j ,t j ),  j = 1,...., m .  (We have not denoted it, but we do not assume there 
are data for all mn possible (i,j) pairs.)  Applying our maximum-likelihood formulation to this problem, we can 
define a solution as maximization of the likelihood function given by 
 
    − logL (x1,t1,...., xm , tm , c;d) =  
 
    K1 + K2 dij − t j −Ti (x j ) − ci

p /(ν ij ) p

ij

∑    (19) 

 
where c = (c1,…,cn), d denotes the vector of data from all events, and K1 and K2 are constants.  A complete 
solution of this problem yields a probability distribution of an estimator for c, which could then be used as a 
modeling error distribution in locating a new event.  An even more rigorous approach would be to include each 
new event in the multiple-event analysis and infer its location uncertainty directly, accounting for the trade-offs 
amongst event locations and travel-time corrections. 
 
The assumption of source-independent station corrections restricts a calibration analysis of this type to events 
that are in a tight cluster.  To address calibration with events distributed over a wide region, it is necessary to 
consider the spatial dependence of travel-time corrections.  A geo-statistical approach to this problem was 
formulated by Schultz et al (1998), who applied a kriging method to interpolate observed travel-time residuals 
between events.  We are investigating an analysis of modeling errors using this approach.  In this analysis, a 
travel-time correction is a path-dependent term, cij.  A prior error model for the cij is specified by considering 
them to be samples of a random field.  We are formulating this approach with a universal parameterization of 
corrections for all stations.  A simple example, assuming only P wave data so as to avoid new notation, is to 
define a single random field, (x), and let 
 
         (20) cij = a (y i ) +  a(x j )
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where yi is the location of the ith station.  The uncertainty analysis for an event location now falls out of the 
joint inversion problem of multiple-event location and kriging. 
 
Approaches such as this provide a rigorous framework for addressing the uncertainty in seismic event locations 
and the effects of both observational and modeling errors.  However, they do not necessarily lead to practical 
algorithms for accomplishing the analysis.  We are investigating the feasibility of applying our grid search and 
Monte Carlo techniques to the problem, and seeking approximations and shortcuts that can accomplish the basic 
goals of the approach in a practical way. 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
We have developed a general theoretical and computational framework for characterizing the uncertainty in 
seismic event locations. Applications to date show that, for sparsely recorded events or poor station distribution, 
the elliptical confidence regions resulting from a linear, Gaussian analysis do not adequately characterize this 
uncertainty.  The effects appear to be significant when the true confidence region is too large compared to 
event-station distances, or encompasses significant variations in the Earth's velocity.  An example of the latter 
situation is when the data allow focal depths ranging through the crust and upper mantle, which is a common 
occurrence when only first arrivals are used.  The use of non-Gaussian error distributions can also lead to non-
elliptical confidence regions. 
 
As part of our uncertainty analysis, we are attempting to include a realistic model of the errors in the travel-time 
tables used in locating an event.  We are pursuing an approach that links the error model used in single-event 
location to the results of calibration analyses performed with multiple-event data.  To test our ideas, we are 
preparing a large database of events in Turkey that are recorded by local and national networks spanning the 
country, many of which are recorded by regional and teleseismic stations.  These data will enable us to study 
the size and spatial dependence of travel-time residuals, and also provide accurate locations for many small 
events so we can validate the confidence regions we derive from sparse regional networks. 
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Figure 1: Confidence level vs. location for an event from the 1991 Racha earthquake sequence (ID 91135030).  

The top panels are based on the assumption of Gaussian picking errors (p=2).  The bottom panels 
assume the errors are from an exponential distribution (p =1).  Left and center: Cross-sections of 
confidence level vs. hypocenter taken through the maximum-likelihood location.  Right: Confidence 
level vs. epicenter.  Each contour of constant confidence level is the boundary of the 3-D hypocenter 
(left and center) or epicenter (right) confidence region at that level. Note that confidence levels below 
80% are all displayed with white.  The circles mark the local network location for the event.  The 
maximum-likelihood epicenter is at zero northing and zero easting. 
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Figure 2: Confidence level vs. location for the 27 June 1998 Adana earthquake, determined with a Gaussian 

(top) and exponential (bottom) error model.  The panels are defined as in Figure 1.  The circles mark 
the local network location for the event. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Confidence level vs. location for the 4 July 1998 aftershock of the Adana earthquake, shown in the 

same format as Figure 2.  
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