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ABSTRACT 
 
The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring (GNEM) 
multi-region kriging model provides a convenient mechanism for merging seismic statistical mo dels developed 
specifically for bounded regions, over a much broader area in a smooth and continuous fashion.  The method 
involves defining a set of kriging and travel-time model parameters within specific seismic provinces whose 
boundaries are defined by an enclosing polygon.  Each polygon's boundary edges are further characterized using 
a set of transition blending functions that describe the reduction in influence of the polygon's statistical and 
model parameters as a point of interest moves from within the polygon boundary to outside the boundary.  
Spatial domains that are not covered by specific region-dependent polygons inherit a default set of kriging 
parameters and travel-time models.  The entire collection of seismic provinces and the default region determine 
the extent of the multi-region model. 
 
Region-based statistical and model parameters are averaged at points of interest using an assigned weight based 
on the amount of influence exerted by each of the regions that are near the point of interest.  The weights are 
normalized to the total influence exerted by all regions influencing the point of interest.  Transitions at the 
vertices of the polygons are smoothed using a patching circle to ensure that the entire bounding influence 
transition is continuous and differentiable everywhere.  With this approach, not only statistical model 
parameters such as kriging, correlation, shape, and range can be regionally integrated over a broad area, but so 
can region-dependent model parameters such as total travel time, ellipticity corrections, model variance, and 
bulk static corrections.  In fact, any regional based parameter can be successfully deployed over the entire 
multi-region domain. 
 
Using this approach, a set of statistically distinct spatial regions can be combined into a single continuous 
interpolated surface for use by client applications that communicate with the NNSA Parametric Grid Library 
(PGL).  Elements of the multi-region model are currently used by the NNSA Calibration Integration Tool (CIT) 
and the Client GNEM Interface (CGI) Library. 
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OBJECTIVE 

To improve the U.S. National Data Center (USNDC) capability to perform nuclear explosion monitoring, 
researchers at the U.S. Department of Energy (DOE) national laboratories are collaborating to develop a 
collection of data and associated access tools collectively known as the Knowledge Base (KBase). The KBase 
will consist of many types of information, which will improve the performance of all major monitoring 
technologies. The number of different data sets in the KBase is expected to be huge, but viewed from an 
information representation perspective, there are only four basic types of data: reference event information, 
parametric grid information, contextual information, and supporting information. In this report parametric grid 
information is the primary focus, and in particular, the new Multi-Region Kriging (MRK) model. 
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The MRK is an extension to the Modified Bayesian Kriging (MBK) model developed by the national 
laboratories and described below. The MRK extends the MBK by allowing the development of a set of kriging 
statistical parameters for a collection of adjacent regions and providing a framework that treats the collection as 
an unique entity that can provide smooth residual and associated error results across the entire multi-region 
area. This paper will provide a brief overview of the MBK method and then give a synopsis of the MRK 
method before describing some of the mechanical details involved in the formulation of an MRK representation. 

RESEARCH ACCOMPLISHED 

The sections below give an overview of the new Multi-Region Kriging (MRK) capability developed by the 
national laboratories. The first section describes the Modified Bayesian Kriging (MBK) method which remains 
the workhorse in both mono- and multi-region kriging problems. The MBK is the primary tool for evaluating 
seismic path correction residuals and associated errors. References relating to the MBK are provided so that the 
interested reader can learn more about the method if desired. The next section describes the MRK methodology 
and defines its basic construction and terminology. The remaining section illustrates in greater detail the process 
of converting MBK parameters for use in the MRK framework. 

Bayesian Kriging Overview 

Researchers at the national laboratories associated with the GNEM project use kriging primarily to develop 
seismic travel-time residual path corrections and associated errors. Other data development efforts, however, are 
also beginning to employ the method to generate results and associated errors (e.g. magnitude, azimuth and 
slowness corrections, etc.). The kriging method provides a means of linearly interpolating values from a data set 
based on the spatial correlation characteristics of the data itself. The term kriging actually refers to a family of 
interpolation techniques, most of which are Best Linear Unbiased Estimator (BLUE) processes (e.g. 
Wackernagel, 1995). As with other linear interpolation methods, the kriged estimate of the actual value Zp at a 
given point Xp is a weighted combination of the values at the n known observations, 
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where Zi and wi are the value and weight of the ith observation, respectively. Kriging has two important features 
that distinguish it from other linear interpolation methods, however. First, in kriging the weights are determined 
such that the variance of the predicted error is minimized. Second, kriging produces an estimate of the error 
associated with the interpolated value. 

The kriging method employed by the GNEM project employs a modified version of simple kriging (zero mean 
kriging). We call the method Modified Bayesian Kriging, or MBK  (Schultz et al., 1998). MBK is based on 
simple kriging where we assume that the mean has been removed from the data before employing the kriging 
process. The modifications concern the behavior of the observation measurement error and the influence of the 
observations relative to the distance to an interpolation location. 

Generally, kriging imposes an observation dependent modeling error that is the same for all points. However, 
for most of the physical seismological data sets considered for GNEM analysis the measurement error varies 
from one observation to the next. For this reason, our MBK model utilizes observation dependent measurement 
error when performing kriging calculations. 

The second modification in MBK allows for use of a priori range of influence information for each point. For 
many typical GNEM data sets the spatial samp ling is poor but the analyst may have some additional 
information that cannot be derived from the data due to the limited sampling (e.g. the scale length of a tectonic 
province). In the MBK model the influence of the observations on the kriging result at a distance can be 
controlled through the use of smooth neighborhood kriging. This method can reduce or eliminate the influence 
of points based solely on the distance between the point and the interpolation point of interest. This behavior 
makes MBK behave much better as an extrapolator when interpolating in regions that lack good spatial 
characteristics (point coverage and density). 
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These two modifications are the primary changes employed over simple kriging in the MBK model. Other 
subtle changes do exist but are not relevant to the current discussion. The interested reader who desires more 
detailed information concerning the MBK method and its development should consult Schultz et al. 

 

Multi-Region Approach 

As discussed in the MBK approach above, sometimes the complexity of geophysical regions can force the 
modification of standard analytical models so that the inherent complexity is more correctly represented. In the 
case of the MBK, the simple kriging models were extended to incorporate observation dependent measurement 
errors and distance dependent influence on the kriged results. These modifications tend to yield very good 
results within the confines of geographical regions where the same set of kriging statistics apply. However, as 
the spatial extent (range) of the data increases the properties of the statistical parameters used in performing the 
kriging analysis, such as background model error and the correlation range and shape, can also change. These 
changes, for example, can be caused by perturbations in geophysical properties, such as amorphous 
inhomogeneities, or by sharp discontinuities, such as a tectonic province boundaries. Generally, one simply 
reformulates the statistical properties of distant regions and uses those in place of the original formulation. A 
modeling problem, however, can occur at or near the boundaries or regions of overlap between two or more 
models. In those regions different results can be produced at the same location depending on which set of 
statistical properties are used. This causes discontinuities in the spatial solution from one model to the next. 
This, in turn, presents difficulties for certain analytical processes (e.g. seismic location) where smoothness 
guarantees solution stability.  What is needed is an approach that captures the complexity sufficiently so that 
statistical properties can change with position but does so in a smooth and continuous fashion so that there are 
no solution discontinuities. 

To accomplish this we have defined separate statistical regions that are modeled with discrete polygonal 
boundaries. We refer to these regions interchangeably as kriging or statistical regions, when describing 
statistical attributes, or polygon regions, when discussing geometric qualities. Regions that are not contained by 
a specific kriging polygon are said to reside in the default kriging polygon. Figure 1 below shows an example of 
a set of polygons that define specific statistical regions of influence. Notice that the polygon boundaries may or 
may not lie adjacent to other separate and independent statistical regions. The polygon outlined in red1 will be 
used in the remainder of this discussion to illustrate the particular properties of these statistical or kriging 
polygons, and their impact relative to providing a global solution over all polygons in the region collection.  

Aside from the specific polygon boundaries, we must define a transition region about the fixed polygon 
boundary of each unique statistical region that controls the amount of influence that the regions statistics 
confers on any arbitrary location. Further, we require that the change in influence as the position changes be a 
smooth and continuous process. The transition region serves to shift the influence of the polygon’s statistical 
properties from all influencing, for points that are contained completely within the fixed polygon’s inner 
transition boundary, to no influence, for regions that lie completely outside of the polygon’s exterior, or outer, 
transition boundary. Figure 2a illustrates the concept of a transition region. The extent of the transition region is 
determined by defining vertices for both the inner and outer transition boundaries. Each inner and outer 
transition vertex is associated with a specific vertex of the polygon boundary. These vertices have no placement 
restrictions other than they must form polygons that do not have any self-crossings (edges that intersect) nor do 
they cross the defining kriging polygon. In other words, the inner transition boundary is completely contained 
within its associated polygon boundary and does not self-intersect, and the outer transition boundary lies 
completely exterior to its associated polygon boundary and does not self-intersect. 

                                                 
1 Because this information is impossible to convey without the use of color, and the printed Proceedings are in 
black and white as a cost-saving measure, we refer the reader to one of the electronic versions of this 
Proceedings for interpreting the figures in this paper.  The electronic versions can be found at 
http://www.nemre.nn.doe.gov/review2001 or on the CD ROM version of the Proceedings.  Or, readers should 
feel free to contact the authors.  
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Figure 1. This depiction illustrates an example collection of polygons that represent a set of discrete areas, 
each with roughly constant statistical properties.  The default region is considered to be any and all 
regions in the model that are not contained within one of the independent statistical regions.  The 
statistical region outlined in red is used throughout the remainder of the paper as an example 
statistical region for purposes of clarifying the details of the model. 

Next we map a smooth shape function between the transition boundaries that has a value of one with a slope of 
zero at the inner transition boundary, and a value of zero with a slope of zero at the outer transition boundary. 
The shape of the function is not important but it should be monotonically smooth. With this model we can 
assign a weight for the amount of influence provided by a statistical region relative to an arbitrary point. Points 
that are on or completely within the inner transition boundary have a weight of one (i.e. complete influence), 
while points that lie on or completely exterior to the outer boundary have a weight of zero (i.e. no influence). 
Points that lie between the inner and outer boundaries have an intermediate value between one and zero 
depending on the shape of the function and the mapping projection at those locations. 

Lastly, we ensure differentiability in the transition region around the boundary vertices by specifying a patch 
circle that connects the edges of a vertex at an equal but arbitrary distance away from the vertex. This distance, 
referred as the Tangent-Point-Distance, or TPD, can be adjusted to control the amount of curvature around the 
vertex and must be specified for both the inner and outer transitions at each vertex. The TPD position along 
each edge that connects with an inner or outer boundary vertex is arbitrary but must be chosen so that the circle 
formed between two tangent points on either side of a boundary vertex contains the kriging polygon boundary 
vertex within the confines of the transition region. Figure2b depicts the transition region with the TPD patch 
circles connected to the inner and outer transition boundaries. Figure 2c shows the same diagram with the 
completed circle patch at each vertex of the inner and outer transition. Finally, Figure 2d shows the plane view 
of the transition surface after mapping a hermite shape function into the transition region. The dark red area has 
a value of one while the blue area has a value of zero. Figure 3 shows a corresponding three-dimensional view 
of the surface. 

 

Default Statistical Region 

Independent Statistical Regions 
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Figure 2. a) This panel illustrates an example polygon boundary (red edges and vertices) enclosed by an outer 
transition boundary (magenta edges and vertices), and containing an inner transition boundary (blue 
edges and vertices). b) This panel shows the construction of the TPD patch points (green vertices) 
with the existing inner and outer transition boundary edges. c) This panel depicts the completed 
smooth inner and outer transition boundaries. d) This panel shows a plane view of the final surface 
with the mapped hermite transition function that moves from a value of one (dark red), inside the 
inner transition boundary, to a value of zero (dark blue) outside the outer transition boundary. 

dc

b
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Figure 3. This Figure illustrates a three-dimensional view of the patched and mapped transition weight surface 
for the example polygon shown in Figure 1 and 2. Notice the smooth curvature everywhere. The 
shape of the monotonic hermite polynomial function is evident as we move from a region that is 
completely contained by the inner transition (a weight of one and colored red), to a region that is 
completely outside of the outer transition (a weight of zero and colored blue). 

 

Region Based Weights  

We now have a means for defining the amount of influence that a particular statistical region can have at an 
arbitrary point. The researcher is free to design the shape of a statistical region transition zone to be almost 
anything. Rapid changes in statistical influence caused by crossing over tectonic boundaries are easily modeled 
by making the distance between the inner and outer transition small. Gradual changes in statistical influence due 
to large-scale amorphous heterogeneity in the Earth are modeled by making the distance between the inner and 
outer transition boundaries large. Given this flexible influence weight strategy, we can consider methods for 
weighting the intrinsic statistical properties of each unique kriging region. 

Given the design of the MRK model above, we define the amount of influence that each statistical property 
should receive based on position. If a position lies completely within the inner transition region of a polygon we 
allow that statistical property to be totally weighted (T = 1 where T is the transition weight of some statistical 
region). On the other hand, if a position lies completely outside of a polygon’s outer transition boundary, we 
allow no influence for the statistical properties from that region (T = 0). Points that lie between the inner and the 
outer transition boundaries will have some intermediate value (0 ?  T ?  1). 
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Given any position-dependent property of a statistical region we can define an average value accommodating all 
influencing regions by summing the weighted value of the parameter from each region with its associated 
transition weight. The transition weights are evaluated at some interpolation position XP. The expression for this 
averaging technique can be written as 

( ) ( )∑=
R
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R

P
R

P XAXTA , 

where AR(XP) is a regional property to be averaged in the Rth region evaluated at a point XP, and TR(XP) is  the 
weight of the Rth region evaluated at XP. The weights TR are normalized across all regions R that influence a 
specific point XP. Typical point-dependent parameters that may use this weighting scheme in the MRK model 
include the background model variance and the correlation range. We also use this scheme to average the base 
model travel time if the kriging regions defined within the MRK model utilize different base model 
representations. 

We can perform the same weighting for properties that depend on the distance between two points such as 
correlation. For these cases, however, we need to make some assumptions about how points correlate across 
different statistical regions. First, if two points lie completely contained within a region’s inner transition 
boundary, and further, they are not contained by any other polygon’s outer transition boundary, then the two 
points are assumed to be correlated completely using the containing region’s statistics. Second, if two points are 
completely contained by different regions such that both points lie completely within their respective regions 
inner transition boundaries, and further, neither point is contained by any other polygon’s outer transition 
boundary, then the two points are considered to be completely uncorrelated. Figure 4 illustrates these kinds of 
relationships and depicts other cases that are intermediate to the two described above. 

If we assume that each point for which we are trying to determine correlation contributes some weight to the 
process then in the first case (above) both weights are one, while in the second case at least one weight is zero. 
This kind of a relationship implies bilinear weighting of the correlation parameter with respect to a region. This 
relationship can be defined as 

( ) ( ) ( )ij
R
ijj

R
i

RR
ij hXTXT ρρ = . 

In this expression the correlation between the two points, relative to region R’s statistics, are scaled by the 
product of the weights in region R evaluated at both points positions (Xi, and Xj). The parameter hij is the 
distance between the two points. Notice that if both points lie completely within region R’s inner transition 
boundary then both weights are 1, and the average value is simply the region R correlation using the distance 
between the two points. Also notice that if either point lies completely outside of region R’s outer transition 
boundary then at least one weight is zero so that average correlation is zero between the two points. We can 
normalize these weights to the average value of both weights and sum the effect of other influencing regions to 
yield an average correlation at any point regardless of how many statistical regions influence the solution. This 
expression can be written as 
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This expression utilizes all influencing statistical correlation definitions to find the average correlation between 
any two points in a collection of discrete statistical regions. For readers interested in how correlation, 
correlation range, background model variance, and other parameters are used in the MBK model please see 
Schultz et al. (1998).
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Figure 4. This Figure illustrates the possibilities for data observation correlation interaction between two 
adjacent kriging regions that share a common boundary. The two regions (K and L) both have 
defined transition intervals (KT and LT) that overlap with one another. 

 

K L 
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CONCLUSIONS AND RECOMMENDATIONS 

In this paper we have presented the new Multi-Region Kriging (MRK) model used by DOE researchers to 
expand the Modified Bayesian Kriging (MBK) model across regional boundaries where statistical properties 
differ from one region to the next. 

First we summarized the MBK model which uses the basic simple kriging method which attains a solution by 
minimizing the predicted error, and provides an associated error term at the requested interpolation location. We 
also defined the major modifications in the MBK model that introduce observation-dependent error and the use 
of a priori neighborhood range of influence information to aid the MBK model’s extrapolation capability.  

Next we turned our attention to the MRK model and developed the basic construction methodology and 
terminology necessary to describe the MRK. This discussion included the definition of a collection of 
statistically dissimilar spatial regions that may be disjoint from, or adjacent to, other statistical regions in the 
collection. Then we described the necessary requirements to define a monotonic transition region that provides 
for a smooth transition in a regions influence weight as a function of spatial position. We also illustrated the 
process to use circle patching at the vertices of the defining polygons to smoothly change direction from one 
polygon edge to the next. 

Finally, we defined how the statistical properties in a kriging region can be spatially averaged accounting for the 
regions that influence any arbitrary point. In particular, we considered point-dependent properties such as 
background modeling variance and correlation range, and point-to-point distance-dependent properties such as 
correlation. 
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