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ABSTRACT

Perhaps the most important seismic parameter needed to distinguish explosions from natural earthquakes is the
depth of the seismic event. Unfortunately, without seismic observations obtained quite close to the seismic event
epicenter, this parameter is difficult to resolve precisely because of the inherent coupling between event depth and
origin time. In this paper we will explore techniques to improve the location resolution of the iterative linear least
squares location algorithm, which is currently the standard technique for locating seismic events.

To locate seismic events we are using a new code called LOCOO (LOCator Object Oriented). LOCOO uses an
iterative least squares inversion procedure that employs singular value decomposition (SVD) to solve the associated
matrix equations (Geiger, 1910). This algorithm is essentially identical to the one implemented in LocSAT and
EVLoc, which are standard codes that are widely used to locate global and regional seismic activity.

For poorly constrained events, i.e., events that were observed by relatively few, distant stations, the location
frequently oscillates during implementation of the iterative least squares algorithm, between two competing
solutions, neither of which is the best fit to the available data in a least squares sense. In order to converge, the
system must be damped such that a stable solution can be achieved that is near the point in solution space
characterized by the minimum sum squared residuals. The details of how such damping is applied are critical to
obtaining the best possible solution. We have developed an evolutionary scheme for selecting the proper amount of
damping to apply such that a stable solution is achieved. Application of this algorithm in test cases indicates that
with this code, we are able to resolve depth much more frequently than existing codes, without having to resort to
arbitrarily fixing depth, and that the solutions obtained often display significantly lower residuals.
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OBJECTIVE

The most widely used algorithm for estimating seismic event hypocenters and origin times, and the confidence
bounds on those quantities, is the linear least squares inversion algorithm solved using singular value decomposition.
This technique is described in detail by Menke (1989) and Lay and Wallace (1995) and is the basis for seismic event
location applications and a next-generation application called LOCOO under development at Sandia National
Laboratories.  In this paper we review the mathematical basis of the algorithm, discuss the major assumptions made
in its derivation, and explore the utility of using damping to improve the performance of the location algorithm in
cases where some of the assumptions inherent in the algorithm have been violated.

RESEARCH ACCOMPLISHED

Formulation of the Inverse Problem

The seismic event location problem can be described as follows:  We are presented with N observations of seismic
arrival times, station-to-event azimuth, and horizontal slowness, which we denote as a vector d of length N, and we
wish to determine the location in time and space of the seismic event which produced the observations.  The location
is described by a vector m, of length M = 4, which contains the event latitude, longitude, depth and origin time.  In
order to determine m, N must be ≥ M and we need an operator F, which relates the event location to the
observations:

dF(m) = (1)

For the seismic event location problem, F is an earth model as defined by the geometry of the Earth and a set of
travel timetables with associated corrections.  Equation 1 is a statement of the forward problem:  given an Earth
model and a seismic event location, we can use it to calculate a set of observations.  The problem we wish to solve is
the inverse problem: given an Earth model, F, and a set of observations d, find m, the location of the seismic event
that produced the observations.  Since F is non-linear, we cannot solve the inverse problem directly.  The standard
approach is to start with an initial estimate of the event location, m0, and try to deduce an appropriate perturbation to
that location, dm, such that

mmm =+ ä0 (2)

In other words, find the change in event location which will move the event location from the initial estimate of the
event location to the event location that, when operated on by the Earth model, will produce the observations.
Combining Equations 1 and 2 we have

dmmF =+ )( 0 ä (3)

To solve Equation 3 for dm, we first linearize it by expanding the left hand side into a Taylor series
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Ignoring all terms of order 2 and greater and substituting the remainder into Equation 3 yields
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At this point we want to consider our a priori uncertainty information.  Associated with each observation di and
prediction Fi are uncertainty estimates sd,i and sF,i, respectively, which combine to yield an uncertainty associated
with each residual sr,i given by
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,

2
,, iFidir sss += (6)

This a priori uncertainty information is introduced into the analysis by creating an N ¥ N diagonal matrix s, the
diagonal elements of which contain the values sr,i as defined in Equation 6.  We multiply both sides of Equation 5 by
s -1, which becomes
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Let us examine the terms of this equation.  The right hand side is a vector of N weighted residuals, defined as the
differences between the observations, d, and the predictions of those observations derived from the Earth model, F,
applied to the estimate of the event location, m0.  The weighting factors are the combined measurement and model
uncertainties.  Their inclusion gives greater weight in the analysis to residuals that have smaller uncertainties, and it
renders all of the residuals unitless.  The left hand side consists of three terms.  The first is an N ¥ M matrix of
weighted partial derivatives of the N model predictions with respect to the M components of the estimated event
location.  Each element of this matrix describes the amount by which one of the predictions will increase as a result
of a positive change in one of the M components of the estimated event location.  When the predictions increase, the
residuals decrease so the left hand side is a recipe for decreasing the residuals.  The second term on the left side of
Equation 7, dm, is a vector of length M containing finite changes in each of the M components of the event location.

Note that the right and left hand sides of Equation 7 are related by an “approximately equal” symbol.  This indicates
that Equation 7 is only an approximation since the high order terms in Equation 4 were omitted.  Equation 7 will be
correct only to the extent that, in regions of the model parameter space near m0, changes in weighted residuals are
directly proportional to weighted changes in model parameters.  In this context, “near” means within a distance
characterized by dm.

For convenience of notation in all that follows, let us define a matrix A of weighted partial derivatives
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and a vector r of weighted residuals
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1 mFdór -⋅= - (9)

so that Equation 7 becomes

rmA @⋅d (10)

Note that Equation 10 does not lead directly to a solution to our original problem, i.e., it does not yield an estimate
of the value of dm that leads to m.  Rather, it tells us only how small changes in a given event location will affect
residuals between observed and predicted seismic quantities.  What we seek is the particular value of dm which,
when added to m0, will lead to the minimum of the sum squared weighted residuals, c2

min, where the sum squared
weighted residuals, c2, is defined as
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c2
min is found by taking the derivative of c2 with respect to each of the model parameters and setting them equal to

0:
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Reorganizing terms, this becomes
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or equivalently

rAmAA ⋅@⋅⋅ TT d (14)

Now, AA ⋅T  is an M ¥ M symmetric matrix so, if it is not singular, it will have an inverse and we can write

[ ] rAAAm ⋅⋅⋅@
- TT 1

d (15)

It remains to actually solve Equation 15.  Menke (1989) and Lay and Wallace (1995) show that singular value
decomposition (SVD) of A produces exactly the same least squares solution as Equation 15.  SVD decomposes A
into a set of matrices U, W and VT where U is an N ¥ M column-orthogonal matrix and VT is the transpose of an
M ¥ M orthogonal matrix.  U and V are orthogonal in the sense that their columns are orthonormal.   The columns of
V are M-dimensional vectors that describe the principal axes of the error ellipsoid of the solution vector dm.  W is
an M ¥ M diagonal matrix containing the so-called singular values of matrix A.  The diagonal elements of W are all
zero or positive (Press et al., 2002).

Replacing A by its decomposition we obtain

U ⋅ W ⋅ VT ⋅ dm @ r (16)

Now, since U and VT are orthogonal, their inverses are equal to their transposes.  And since W is diagonal, its
inverse is equal to the diagonal matrix whose elements are the reciprocals of the elements W.  This allows us to
write the solution to Equation 16 as

rUWVm ⋅⋅⋅@ - T1d (17)
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where the subscripts i on matrices U and V indicate column numbers and wi indicates the i’th diagonal element of
W.  Equations 17 and 18 say that each element of dm is a linear combination of the columns of V, with coefficients
obtained by forming the dot products of the columns of U with the vector of residuals, r, scaled by the singular
values.

We have, finally, the solution that we are after: the value of dm which, when added to the initial event location
estimate m0, produces m.  When m is operated on by our earth model, F, (Equation 3), a set of predictions is
produced that agrees as well as possible with the observations, in a least squares sense.
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Alas, the last statement is almost, but not quite, true.  It would be true if Equation 5 were exactly equivalent to
Equation 3, which it is not because we linearized Equation 3 by ignoring all high order terms in Equation 4.
However, if the conditions outlined in the second paragraph following Equation 5 are approximately satisfied, then
dm will lead to a solution m, which is closer to c2

min than was m0.  If Equation 3 is nearly linear in the model
parameters, then m will be much closer than m0.  If we accept the improved location as the initial estimate for
another application of Equations 2-18, then the solution will be improved further still.  If we continue to iteratively
apply Equations 2-18 in this manner, we will ultimately reach a situation where the residuals are very close to the
minimum we seek and the solution ceases to change significantly.  At that point we can conclude that we have
reached convergence and accept the solution as the final solution.

Poorly Constrained Events

Up to this point we have assumed that the solution to our problem was well constrained by the available data.  What
if that is not the case?  For example, if the data set d consists only of azimuth observations from a large number of
widely distributed seismic stations, it will be possible to accurately constrain the latitude and longitude of the event
but it will not be possible to resolve the depth or the origin time.  In matrix A, all of the elements in the columns
corresponding to the derivatives with respect to depth and origin time will contain zeroes.  In this case, A is singular
and the singular values that correspond to depth and origin time will be equal to zero.

Another situation in which problems can arise is when travel time observations are available from a cluster of
stations, but all the stations are far from the event.  In this case, there will be a trade off between the depth of the
event and the origin time.  Increasing the origin time of the event, without significantly impacting the residuals, can
compensate for an increase in the estimated depth of the event.  In this case, A is not singular but rather ill-
conditioned.  The singular values corresponding to depth and/or origin time will be much smaller than those
corresponding to latitude and longitude.  The degree to which A is ill-conditioned is characterized by the ratio of the
largest to the smallest singular values, a quantity that is referred to as the condition number.

One of the significant advantages of the SVD algorithm is that after computing the SVD of A, we can examine W to
assess potential difficulties and take steps to alleviate them before finally computing dm using Equation 18 (Press et
al., 2002).

If A is singular, then one or more of the singular values will be equal to zero and the condition number will be
infinite.  The difficulty will be encountered when we attempt to compute Equation 18 since we will be attempting to
divide by zero.  In this case we must take action before computing Equation 18 or our algorithm will generate an
exception and fail.

In cases where the condition number is extremely large, round off errors in the computer may come in to play,
yielding a solution with wildly large components that send our event location off into regions that make no physical
sense.  Fortunately, this situation appears to be rare in overdetermined seismic event location problems.  More
common is for the condition number to be moderately large, in which case it is possible to solve for all of the
location parameters, but it may not be particularly useful to do so.  In the second example described above where a
trade-off between depth and origin time exists, the uncertainties on the depth and origin time of the event may be
extremely large (larger than the dimensions of the Earth, for example) rendering the results meaningless.

When we encounter a situation with a large condition number our best option is to change the smallest singular
value to infinity.  This causes the algorithm to simply not solve for the parameter that corresponds to the
manipulated singular value.  In the two examples above, if we set the singular value corresponding to depth to
infinity, we would simply give up trying to solve for depth.  In Equation 18, where wi appears in the denominator,
this means that the element of dm corresponding to depth will be zero and depth will not deviate from its initial
estimate.

246

24th Seismic Research Review – Nuclear Explosion Monitoring: Innovation and Integration 



Oscillating Solutions

Another difficulty that is frequently encountered when implementing the iterative linear least squares seismic event
location algorithm described above is for the solution vector dm to oscillate, resulting in seismic event locations m
that alternate between two or more significantly different locations.  A set of seismic observations that generates this
behavior is presented in Table 1 and the resulting oscillatory behavior is illustrated by the green curves in Figure 1.
These six observations were drawn randomly from a global set of hand-picked travel time observations recorded for
the May 1998 India nuclear test.  Note that not only do all four components of the event location oscillate, but so
does c2.  This fact indicates that our algorithm has failed since the solution is not moving in the direction of c2

min.

To understand this behavior, we first seek the “best” solution, defined as the solution with the lowest c2.  To
accomplish this we ran a series of locations with depth fixed at different levels from –24 km to 216 km.  Since only
3 location parameters were being solved for, the algorithm behaved quietly, producing stable estimates of the
latitude, longitude, origin time and c2

min, with the event location fixed at each different depth.  Figure 2a illustrates
c2

min as a function of depth with the blue curve representing the results of the experiment just described.  c2
min

occurs near a depth of 30 km, which corresponds to the depth of the base of the crust in the IASPEI travel time
model.  Figure 2b illustrates the “best-fit” latitude and longitude as a function of depth with the blue curve
representing the results of the experiment just described.  The sharp kink in the curve corresponds to the latitude and
longitude of the event location obtained with the event depth fixed at 30 km.

Table 1
Station Latitude

(degrees)
Longitude
(degrees)

Phase Observed
Travel Time
(seconds)

Distance
(degrees)

Event-to-Station
Azimuth

(degrees)

UCH 42.2 74.5 Sn 379.1 14.9 7.9

PDY 59.6 112.7 PcS 825.5 42.6 29.5

HIA 49.3 119.7 P 483.0 42.6 46.0

KS31 37.4 127.9 P 522.6 47.8 63.2

EIL 29.7 35.0 P 395.1 32.3 282.8

OBN 55.1 36.6 P 441.4 37.6 327.1

The kink in the blue curve in Figure 2b suggests that a plausible cause of the failure of the location algorithm is that
the assumption of linear behavior has been violated.  Recall that in the derivation of the location algorithm we
assumed that the derivative of the predicted seismic observations with respect to event location was approximately
linear (Equations 4 and 5).  The kink in Figure 2b indicates quite clearly that this is not the case and that the
particular combination of observations that we have available in this location problem has led to a situation in which
the combined derivatives of travel time with respect to latitude are highly non-linear at the crust-mantle boundary.
When our location m0 is below the crust-mantle boundary, the derivatives and residuals combine to produce a
change in location dm that moves the event location far above the crust-mantle boundary to a location where, due to
non-linearity, c2 is actually larger than it was at the previous location. At this new location, the derivatives and
residuals combine to produce a change in location dm that moves the event location back to where it was before the
most recent change in location was imposed.

In the particular example we are considering, the problem seems to be related to the inclusion of an observation of
an Sn phase at station UCH.  If this observation is omitted the situation is ameliorated
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Figure 1 – The seismic event location, root mean square weighted residual and applied damping factor as a
function of iteration number.  The green curve illustrates the evolution of the undamped solution,
which never converged, while the blue curve illustrates the damped solution.  The red curve portrays
the evolution of the solution obtained when the Sn phase was omitted from the data set.
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onto a common horizontal plane when the depth was held fixed at different levels.  In both figures,
the symbols represent the position of the best-fit damped solution when depth was not held fixed.
Blue curves and symbols represent solutions when all 6 observations were included, Red curves and
symbols represent solutions when the Sn observation was omitted from the analysis.

substantially, as illustrated by the red curves in Figures 1 and 2.  In Figure 2b, the kink in the latitude-longitude
curve has disappeared indicating that the severe non-linearity, which was apparently introduced by the Sn
observation, has disappeared.  In Figure 1, the solution moves very quickly to convergence without exhibiting any
oscillatory behavior.

While the problem can be resolved by discarding observations, that is a highly undesirable solution to the problem.
A better alternative is to damp the solution vector such that the location changes by smaller amounts at each
iteration, ultimately converging on the best-fit solution.  This damping must be properly imposed however, such that
the solution continues to move toward c2

min.  The appropriate course is to impose an additional constraint on the
system, over and above the constraint that we seek to minimize c2.

The additional constraint is that we wish to also minimize the length of the solution vector (Menke, 1989).  These
two constraints compete with other so by adding the minimum length constraint, we weaken the c2

min constraint.
Total minimization of the solution length alone would be accomplished by setting all the singular values to infinity,
in which case the solution vector would consist of all zeroes and its length would be zero.  We combine the c2

min and
minimum length constraints by adding a constant damping factor, e, to each element of W.  Equation 17 and 18
become

rUIWVm ⋅⋅+⋅@ - T1)( ed (19)
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Since e appears in the denominator of Equation 20, it acts to reduce the magnitude of the changes in the location
parameters in each iteration.  So long as e is not too large, the minimum c2 constraint will dominate and the solution
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will continue to move toward c2
min.  This is precisely the behavior needed to overcome the oscillations induced by

non-linearity.  The trick is to impose sufficient damping to overcome the oscillations but not to impose so much that
the solution stops moving before it reaches c2

min.

The algorithm we have implemented to accomplish this begins by initializing the applied damping factor, e, to zero
at the start of the location algorithm.  If, after some minimum number of iterations, c2

 is observed to increase over its
value at the conclusion of the previous iteration, the applied damping factor is set to some small initial damping
factor, e0, which is typically some small fraction of the largest singular value.  After each successive iteration, if c2

 is
observed to increase over its value at the conclusion of the previous iteration, then the applied damping factor is
multiplied by an additional factor, h, which consists of two components, hconst and hfactor, with

iterations

iteration
factorconst max

hhh += (21)

where iteration is the current iteration number and maxiteration is the user-specified maximum number of iterations
that the algorithm is allowed to implement before aborting.  Typically, both hconst and hfactor are set to equal 1.  In this
case, e grows very slowly early during a run but then grows very rapidly as the maximum number of allowed
iterations is approached.  Experience indicates that this algorithm allows the solution to reach convergence before
the damping factor gets to be so large that the solution no longer moves.

Application of this algorithm to the example problem is illustrated by the blue curve in Figure 1.  The damping
factors imposed as a function of iteration number are illustrated in Figure 1f.  The maximum number of iterations
allowed was set at 100.  Oscillations are detected after just a few iterations and the damping factor begins to
increase.  After about 36 iterations, the solution has stabilized and oscillations, while still occurring with very small
amplitude, are no longer discernible at the scale of the illustration in Figure 1.  Finally, after 42 iterations, the
algorithm converges.  The fact that the algorithm converged on the “correct” solution is illustrated in Figure 2b,
where the small symbols represent the solutions obtained with the damped algorithm just described.  In all cases, the
damped algorithm achieved solutions characterized by the minimum of c2 as determined by the multiple fixed depth
runs.

It is interesting to note that the c2
min solution occurs very near the base of the crust at 30 km depth even though the

event that produced the observations is known to have occurred at the earth’s surface.  Note also that the solutions
obtained when the observation that induced the non-linearity was omitted occur at a much shallower depth than the
non-linear solutions.  One might speculate that the non-linearity induced by the particular combination of
observations used in the analysis somehow pulled c2

min to the point in the model space where the non-linearity was
most pronounced.  If this is the case, then the minimum sum squared weighted residual solution, whether obtained
by the damped linear least squares algorithm or by any other solution algorithm that seeks to minimize c2, might be
misleading.  The importance of this hypothesis must be kept in perspective, however, given that the uncertainty on
the depth in the example presented is large (± 550 km), even compared to the amplitude of the oscillations
encountered.  This issue is the subject of continuing investigation.

CONCLUSION AND RECOMMENDATION

In this paper, we have reviewed the mathematical basis of the linear least squares inversion algorithm, which is the
most widely used algorithm for estimating seismic event hypocenters and origin times.  We have placed particular
attention on the assumption of linearity of the predictions of the observations with respect to the seismic event
location, showing how the assumption arises in the derivation and discussing the implications of the assumption.
Finally, using a sample data set drawn from the full set of observations generated by the May 1998 India nuclear
test, we explored the benefits of using damping in the linear least squares inversion technique to improve its
performance in situations where the linearity assumption is violated.
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