
IDENTIFICATION IN WESTERN EURASIA:  
REGIONAL BODY-WAVE CORRECTIONS AND SURFACE-WAVE TOMOGRAPHY MODELS  

TO IMPROVE DISCRIMINATION 
 

William R. Walter, Arthur J. Rodgers, Michael E. Pasyanos, Kevin M. Mayeda, and Alan Sicherman 
 

Lawrence Livermore National Laboratory  
 

Sponsored by National Nuclear Security Administration 
Office of Nonproliferation Research and Engineering 

Office of Defense Nuclear Nonproliferation 
 

Contract No. W-7405-ENG-48 
 

 
ABSTRACT 
 
Our identification research is focused on the problem of correctly discriminating small magnitude explosions from a 
background of earthquakes, mining tremors, and other events. Small magnitude monitoring leads to an emphasis on 
regional waveforms. The goal is to reduce the variance within the population of each type of event, while increasing 
the separation between the explosions and the other event types. We address this problem for both broad categories 
of seismic waves, body waves, and surface waves. First, we map out the effects of propagation and source size in 
advance so that they can be accounted for and removed from observed events. This can dramatically reduce the 
population variance. Second, we try to optimize the measurement process to improve the separation between 
population types.  
 
For body waves we focus on the identification power of the short-period regional phases Pn, Pg, Sn and Lg, and 
coda that can often be detected down to very small magnitudes. It is now well established that particular ratios of 
these phases, such as 6- to 8-Hz Pn/Lg, can effectively discriminate between closely located explosions and 
earthquakes. To extend this discrimination power over broad areas, we developed a revised Magnitude and Distance 
Amplitude Correction (MDAC2) procedure (Walter and Taylor, 2002). This joint source and path model fits the 
observed spectra and removes magnitude and distance trends from the data. The MDAC2 procedure makes use of 
the extremely stable coda estimates of Mw for source magnitude and can also use independent Q tomography to 
help reduce trade-offs in fitting spectra. We can then apply the Kriging operation (e.g. Schultz et al., 1998) to the 
MDAC2 residuals to provide full 2-D path corrections by phase and frequency band. These corrections allow the 
exploration of all possible ratios and multivariate combinations of ratios for their discrimination power. We also 
make use of the MDAC2 spectra and the noise spectra to determine the expected signal-to-noise value of each phase 
and use that to optimize the multivariate discriminants as a function of location. We quantify the discrimination 
power using the misidentified event trade-off curves and an equiprobable measure. In addition to the traditional 
phases, we are also exploring the application of coda amplitudes in discrimination. Coda-derived spectra can be 
peaked due to Rg-to-coda scattering, which can indicate an unusually shallow source. 
 
For surface waves we continue to make improvements in our regional group velocity tomography models of 
Western Eurasia and North Africa. The tomography mo dels provide high-resolution maps of group velocity from 
10- to 100-s period. The maps also provide estimates of the expected phase spectra of new events that can be used in 
phase-match filters to compress the expected signals and improve the signal-to-noise ratio on surface wave 
magnitude (Ms) estimates. Phase match filters in combination with regional Ms formulas can significantly lower the 
threshold at which Ms can be measured, extending the Ms:mb discriminant. We have measured Ms in western 
Eurasia for thousands of events at tens of stations, with and without phase match filtering, and found a marked 
improvement in discrimination. Here we start to quantify the improvement to both discrimination performance and 
the Ms threshold reduction. 
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OBJECTIVE 

We continue developing, testing, and refining size-, distance-, and location-based regional seismic amplitude 
corrections to facilitate the comparison of all events that are recorded at a particular seismic station.  These 
corrections, calibrated for each station, reduce amplitude measurement scatter and improve discrimination 
performance.  We test the methods on well-known (ground truth) datasets in the U.S. and then apply them to the 
uncalibrated stations in Eurasia, Africa, and other regions of interest to improve underground nuclear test monitoring 
capability. 

 
RESEARCH ACCOMPLISHED 

As part of the overall National Nuclear Security Administration Ground-based Nuclear Explosion Monitoring 
(GNEM) Research and Engineering program, we continue to pursue a comprehensive research effort to improve our 
capabilities to seismically characterize and discriminate underground nuclear tests from other natural and man-made 
sources of seismicity.  To reduce the monitoring magnitude threshold, we make use of regional body and surface 
wave data to calibrate each seismic station.  Our goals are to reduce the variance and improve the separation 
between earthquakes and explosion populations by accounting for the effects of propagation and differential source 
size.  Here, we briefly review three of these efforts: 1) MDAC2 - a revised spectral normalization technique to 
improve regional body-wave discrimination, 2) regional coda envelope based spectral peaking as an indicator of 
shallow depth events and 3) Improved Ms:mb discrimination using high-resolution surface wave tomography.  

MDAC2 

Effective earthquake-explosion discrimination has been demonstrated in a broad variety of studies using ratios of 
regional amplitudes in high-frequency (primarily 1-to 20-Hz) bands (e.g. Walter et al., 1995; Taylor, 1996; Rodgers 
and Walter, 2002; Taylor et al., 2002; and many others).  When similarly sized earthquakes and explosions are 
nearly co-located, we can understand the observed seismic contrasts, such as the relative P-to-S wave excitation, in 
terms of depth, material property, focal mechanism and source time function differences.  For example, in Figure 1, 
we compare pairs of earthquakes and explosions of similar size and location and recorded at a common station.  The 
traces have been high-frequency band passed at 6-8 Hz and show the characteristic discrimination difference, where 
in each case the explosion has larger P wave amplitudes relative to the S waves when compared to the earthquake.   
 
The availability of such reference events, particularly nuclear tests, to compare to a new event in question is highly 
non-uniform and limited.  Therefore, in real monitoring cases, we are often interested in comparing events that are 
not co-located, not recorded at the same station and may have quite different sizes. In order to make sure any 
observed differences between a new event in question and the reference events (or models) are not due to 
differences in path or magnitude, we must correct for these effects.  For the past several years, we have been 
working with our colleagues at Los Alamos National Laboratory on the best ways to model and remove magnitude 
and distance trends from regional amplitudes. The original MDAC (Magnitude and Distance Amplitude Correction) 
procedure involved estimating and removing a simple theoretical earthquake spectrum from the data to remove any 
magnitude and distance trends in the regional phase amplitudes and any discriminants formed from those amplitudes 
(Taylor et al., 2002).  We have just completed a refined and imp roved version of the procedure (MDAC2) by 
generalizing the source model, taking advantage of independent moment estimates and reducing some of the free 
parameters (Walter and Taylor, 2002). 
 
The source spectrum depends upon the seismic moment and stress drop and can have additional complications due 
to non-constant stress drop scaling and differential P/S corner frequency effects.  We require the different phases for 
the same event recorded at the same station to have the same moment and apparent stress (or stress drop) values and 
other source parameters, such as corner frequencies to be related to each other.  This requirement effectively 
imposes some of the ratio constraints discussed in Rodgers and Walter (2002) on the amplitudes and improves 
discrimination performance. While such models of source spectra are certainly oversimplified, they have proven 
track records of providing good first-order fits to real earthquakes.  In addition they also provide simple theoretical 
models to use in aseismic areas. 
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Figure 1. 6- to 8-Hz bandpass seismograms of earthquakes (blue) and explosions (red) show relative P to S wave 

amplitude differences that allow discrimination between the two source types. 
 
 
The details of the MDAC2 formulation are given in Walter and Taylor (2002).  The predicted spectrum is a 
convolution of the revised source terms and the previously used geometrical spreading, site, and apparent 
attenuation terms.  We can write the log of the MDAC2 predicted spectrum as (Walter and Taylor, 2001): 
 

log P( f , R) = log( So ) − log 1+
ω
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for a regional phase with velocity c.  Here So is the source low-frequency spectral level and ωc is the source corner 
frequency.  These terms are set by the input moment (we use the stable coda measures, see Mayeda et al, this 
volume), the apparent stress scaling and material property terms.  Apparent stress, geometrical spreading (G(R)), site 
effect, and attenuation (Qo, γ) terms are typically solved for using a grid search technique that simultaneously 
minimizes the spectral fit residual and residual magnitude and distance trends.  In this way, a priori information 
such as previous studies on geometrical spreading or Q-tomography results can be easily incorporated.  
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Figure  2. Comparison of observed (black) and MDAC2 model (red) spectra for a regional earthquake recorded at 

NIL. 
 
In Figure 2 we show a comparison of the observed regional phase spectra (Pn, Pg, Sn and Lg) for a regional 
earthquake recorded at station NIL with the model spectra.  Overall, the match is reasonable, though the Lg 
attenuation and site terms could use further refinement.  By subtracting these model spectra, we essentially 
normalize the observations for effects of source, 1-D path, and site.  However, 3-D path effects remain in the 
residuals.  We can further reduce the MDAC2 residual amplitude variance by using the Bayesian kriging method of 
Schultz et al (1998) on the results.  For each phase and frequency band we create kriged residual surfaces.  These 
surfaces can then be used to create any discriminant measurement of choice.  For example we can make phase, 
spectral and cross-spectral ratio measurements between any phase and frequency combination.  In practice it is 
found that the best discriminant performance comes from combining several different ratio measurements (e.g. 
Taylor, 1996).   
 
We test these ideas on a dataset of regional events with magnitude greater than 3.5 recorded at NIL (e.g., Rodgers 
and Walter, 2002).  In Figure 3, we show the raw measurements, MDAC2 corrected measurements, and the kriged 
MDAC2 residual measurements as a function of the equiprobable measure.  The equiprobable point provides a 
measure of the overlap of the earthquake and explosion populations.  It is the point on a receiver-operator tradeoff 
curve of the error rates where the error rates are equal.  For example an equiprobable measure of 0.1 implies that 
10% of the earthquakes are misclassified as explosions and 10% of explosions are misclassified as earthquakes.  In 
practice one might choose a decision line with unequal error rates, such as by picking a low probability of 
misclassifying an explosion. The equiprobable point provides a single numerical measure of performance that is 
much more intuitive than other measures such as Mahalanobis distance, though it can be related to that measure.  
We plot this against the number of optimal combinations of measurements, using the LDA (Linear Discriminant 
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Analysis) rule.  For example the best single measurement, the best combination of two measurements and so forth.  
From this plot we can see at a glance that MDAC2, kriging, and multivariate combinations of measures each 
contribute to a significant improvement over the best single raw measure, and the overall result is an order of 
magnitude improvement in discrimination capability. 
 
 
 

 
 
Figure 3. Plot of raw, MDAC corrected and kriged MDAC residual equiprobable values versus the number of 

feature measurements that go into an LDA discriminant. Feature measures are individual ratios such as 6- 
to 8-Hz Pn/Lg or 6- 8-Hz Pg / 1- to 2-Hz Sn (after Rodgers, Hanley, Sicherman and Walter, paper in 
preparation). 

 
 

Coda Spectral Peaking as a Depth Indicator 

In previous work we found that regional coda envelopes could be used to estimate source spectra and seismic 
moments from earthquakes down to very small sizes (Mayeda and Walter, 1996).  These regional coda-derived 
spectra also show unusual peaking for very shallow events that we attribute to Rg-to-S coda scattering (Myers et al., 
1999).  We are continuing to explore this idea as a better way to identify very shallow events than by direct Rg 
identification.  The Rg phase usually scatters and attenuates to the point at which it can no longer be identified 
within a few hundred kilometers of the source or less.  However, its imprint remains on the coda spectra at much 
greater distances, and, by examining the size and frequency of the coda-based spectral peak, we hope to be able to 
use it as an indicator of very shallow events such as explosions.  As an example we show in Figure 4 the coda 
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spectra of the May 11, 1998, Indian nuclear test compared with a number of nearby earthquakes.  Note the strong 
spectral peak in the explosion spectra at about 1.5 Hz when compared with the earthquakes.  We are also testing 
various ways to use this property and a depth discriminant.  The left hand side of Figure 4 shows one such measure, 
moment versus mb, both derived from the coda spectra, which appears to separate the explosion from the 
earthquakes. 

 

 

Figure 4. Regional coda envelope based spectra of regional events recorded at station NIL. The Indian test of May 
11, 1998, is shown in red triangles. The right hand side shows discrimination on a moment-magnitude plot. 

 
Phase-Matched M  s-m  b 

The teleseismic magnitude ratio MS:mb is one of the best understood and most effective discriminants known (e.g. 
Stevens and Day, 1985).  Several studies have also shown that it appears to be effective down to as small 
magnitudes as can be measured regionally (e.g., Denny et al., 1987).  The problem is that the 20-s surface wave 
amplitude on which MS is based can be below the noise even at regional distances.  We are researching several ways 
to allow MS measurements on smaller magnitude events to be made and used to improve discrimination.  One way is 
to allow regional MS measurements at periods between 10 and 20 s where the regional Airy phase produces the 
largest amplitudes (e.g., Denny et al., 1987).  Additionally we can improve signal-to-noise by making use of phase-
match filters (e.g. Herrin and Goforth, 1977).  This is particularly attractive because in addition to reducing the noise 
level in the signal, it can provide an accurate maximum Ms estimate even on a very noisy trace.  For small 
explosions that have reduced MS excitation to start with and may not have observable surface waves, this method 
can still provide some discrimination power relative to earthquakes of the same mb that do have measurable MS. 
 
For the past several years, we have been carrying out systematic measurements of Rayleigh and Love wave group 
velocities in Western Eurasia with the goal of creating high-resolution tomography models (Pasyanos et al., 2001). 
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We follow the guidelines for measurements laid out in the 1998 surface wave workshop (Walter and Ritzwoller, 
1998) and we have exchanged group velocity curves with groups at the University of Colorado and SAIC/Maxwell.  
The tomography maps that we have created are thus formed from both our own regional measurements and the 
broader measurements provided by those two groups. Overall, we have examined more than 20,000 seismograms 
and made more than 9,900 Rayleigh wave measurements and 5,400 Love wave measurements at periods from 10-
100 seconds.  These numbers apply to the middle period range and the number of good measurements decreases at 
the shorter and longer periods.  In addition we have incorporated more than 3,000 path measurements from the 
University of Colorado (Ritzwoller, written communication) and SAIC/Maxwell (Stevens, written communication).  
We are currently using the surface wave tomography model in conjunction with receiver functions to estimate 
velocity structure in Western Eurasia (see Ammon et al., this volume). 

The Rayleigh wave group velocity tomography described above can be used to provide predicted group velocity 
curves for input to a phase-match filtering routine.  We can pre-calculate the expected group velocity at a station for 
any nearby event using the tomography model.  In Figure 5, we show such a surface for station KEV in Norway.  In 
addition we can use the measurements to provide an additional refinement to the model predictions using an 
intelligent interpolation technique.  Here we use the Bayesian kriging technique of Schultz et al. (1998) on the 
measured residuals and add these back to the surface.  Pasyanos (2000) previously demonstrated that this model plus 
a kriging approach provides better estimates of group velocity than either the model or kriging alone. Figure 5 shows 
an example of a PDE explosion and compares the raw data, a bandpass-filtered signal, and a re-dispersed 
seismogram from a phase-match filter.  Note the improved signal-to noise ratio in the phase-match trace.   

 

Figure 5.  Correction surface for KEV showing predicted 20-s Rayleigh group velocities as a function of event 
location.  The inset compares the results of three different sets of processing on a seismogram from a peaceful 
nuclear explosion.  The phase-match re-dispersed seismogram result comes from using the correction surface. 

 
To test the improvement provided by phase match filtering on M s:mb, we performed a test on a large dataset in 
Western Eurasia.  We examine events with mb  from the National Earthquake Information Center larger than 3.5 
where at least four stations record the event with a signal to pre-event noise ratio greater than 1.5.  In the western 
Eurasia region covered by the tomography, this resulted in 1600 earthquakes and 11 explosions. Decreasing the 
number of stations or the signal-to-noise floor would allow more events.  For these events we measured Ms using 
the formula of Rezapour and Pearce (1998).  The maximum likelihood Ms was measured both by traditional band 
pass filtering and after phase matching filtering using the high-resolution tomography model.  We tried a variety of 
tests in which we varied the SNR or number of stations we found that in almost all cases, phase match filtering 
improves the M s:mb discrimination.  We show an example in Figure 6 below for the parameters discussed above.  
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The left hand side shows M s versus mb.  We then remove the linear trend to form an M s:mb measure in the middle 
plot.  From this scatter plot, we determine the receiver operator curve of the types of misidentification error.  The 
phase match based M s improves the overall discrimination performance by nearly a factor of two.  Here we hold the 
dataset in common, but in further testing, we estimate that the phase match is able to lower the M s detection 
measurement threshold by roughly 0.3 magnitude units or a factor of two.  Both of these effects, improved 
discrimination performance and lower Ms measurement thresholds, indicate that using phase-match filtering for the 
Ms measurement can significantly improve discrimination performance. 
 
 

 
 
Figure 6.  A Western Eurasia dataset test of M s:mb on left.  Earthquakes are green circles and explosions are red 

stars. We remove the earthquake data trend from all data in the middle plot to form a magnitude 
independent measure of discrimination.  The right hand plot shows the error rates from the de-trended data 
and the discrimination improvement provided by phase match filtering versus bandpass filtering. 

 

CONCLUSIONS AND RECOMMENDATIONS 

Regional discrimination algorithms require calibration at each seismic station to be used for nuclear explosion 
monitoring.  We have developed a revised Magnitude and Distance Amplitude Correction procedure to remove 
source size and path effects from regional body-wave phases.  This allows the comparison of any new regional 
events recorded at a calibrated station with all available reference data and models.  This also facilitates the 
combination of individual measures to form multivariate discriminants that can have significantly better 
performance. We have also developed surface wave group velocity maps and correction surfaces for phase-match 
filtering to improve Ms:mb discrimination and lower its effective threshold.  Calibrating seismic stations to monitor 
for nuclear testing is a challenging task that will require processing large amounts of data, and collaboration with 
government, academic and industry researchers and incorporation of the extensive R&D results both within and 
outside of NNSA. 
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