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ABSTRACT 
 
We are developing regional-phase (Pn, Pg, Sn, Lg) tomographic attenuation models for Eurasia. The models will be 
integrated into the National Nuclear Security Administration (NNSA) Knowledge Base and used in the Magnitude 
and Distance Amplitude Correction (MDAC) station calibration for the development of regional seismic 
discriminants. Our current focus is on Pn, an extremely important phase in seismic event identification.  
 
Accurately accounting for regional-phase geometric spreading is critical for the development of useful attenuation 
models. It is particularly important for Pn and Sn waves because the propagation mode of these waves makes them 
more susceptible to upper mantle velocity structures and the Earth’s sphericity, which in turn causes the geometric 
spreading of Pn (and Sn) to be dependent on frequency as well as on range in a complicated way. We conduct 
numerical simulations to quantify Pn and Sn geometric spreading in a spherical Earth model with constant mantle 
velocities. Based on our simulation results, we present new Pn and Sn geometric spreading models in the forms  

G(r, f ) = [10n3 ( f ) /r0] r0 /r( )n1 ( f ) log r0 / r( )+n2 ( f )
and  ni( f ) = ni1 log f / f0( )[ ]2

+ ni2 log f / f0( )+ ni3,  
 
where i = 1, 2 or 3. r is epicentral distance; f is frequency; r0 = 1 km and f0 = 1 Hz. We derive values of coefficients 
nij by fitting the model to computed Pn and Sn amplitudes for a spherical Earth model having a 40-km-thick crust, 
generic values of P and S velocities and a constant-velocity uppermost mantle.  
 
We apply the new spreading model to observed data in Eurasia to estimate average Pn attenuation, obtaining more 
reasonable results compared to using the standard power-law model. Our new Pn and Sn geometric-spreading models 
provide generally applicable reference behavior for spherical Earth models with constant uppermost-mantle 
velocities.  Since our region of interest encompasses most of Eurasia from the Equator to the North Pole, simple 
regular gridding methods such as dividing the region with latitude and longitude lines would result in cells with 
drastically different cell sizes for the tomographic inversion. To avoid this problem and to optimize the resolution of 
the tomographic model based on data distribution, we have implemented several gridding schemes. They include 
equal-cell-size gridding and variable-cell-size gridding based on certain criteria such as the number of path hits. 
These gridding schemes will be tested in future tomographic inversions to find an optimum gridding method. 
 
To prepare for the attenuation tomographic inversion, we have been collecting and measuring regional-phase 
amplitude data from the Incorporated Research Institute for Seismology Data Management Center and from the Los 
Alamos National Laboratory Ground-Based Nuclear Explosion Monitoring Research and Engineering program 
database. Initial Pn amplitude measurements exhibit similar decay behavior as what we see in the synthetic data. To 
improve our data coverage, we are conducting further data collection, phase picking and amplitude measurement.  
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OBJECTIVE 
 
The objective of this project is to develop 1-Hz, two-dimensional, regional-phase (Pn, Pg, Sn and Lg) tomographic 
attenuation models for Eurasia. The models will be used in MDAC for improved event identification. 
 
RESEARCH ACCOMPLISHED 
 
Pn geometric spreading 
 
Accurately accounting for geometric spreading is critical for the development of meaningful regional-phase 
attenuation models. This is particularly true for Pn and Sn waves because the nature of their wave propagation 
renders them acutely sensitive to upper mantle velocity structure and the Earth’s sphericity. Even simple one-
dimensional (1D) velocity models can produce geometric spreading of Pn and Sn that is strongly dependent on 
frequency and range (e.g., Sereno and Given, 1990). If frequency dependence of the geometric spreading actually 
occurs and is neglected, the attenuation model will acquire incorrect frequency dependence. Similar arrival times of 
Pg and Pn phases and Pn and P phases at their respective crossover distances result in rapidly changing P-wave 
amplitudes, difficulty in phase isolation and identification, and uncertainty in appropriate specification of the 
propagation path and geometric spreading at these distances. Lateral variation of Moho topography and upper-
mantle lid velocity and fine scale heterogeneity of the lower crust and/or mantle lid further introduce 2D and 3D 
complexities into Pn and Sn spreading. 
 
We conduct most of our simulations using the reflectivity method. Results from reflectivity calculations are 
compared with results calculated with a 2D finite-difference code (Xie and Lay, 1994) and a 2.5D axisymmetric 
spherical finite-difference code, SHaxi, to confirm that the earth flattening transform (EFT) and layer discretization 
required by the reflectivity method do not produce numerical artifacts. The reflectivity method generates complete 
synthetic seismograms within a specified slowness range for 1D, plane-layered velocity models. In order to use the 
reflectivity method for a spherically symmetric Earth model, we apply the EFT to transform the spherical Earth 
model to a plane Earth model. Transformations of velocity v and depth z are (Chapman, 1973; Müller, 1977) 

 v f = R
R − zr

vr    and   z f = R ln R
R − zr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , (1) 

where R is the radius of the Earth. Subscript r designates values in the spherical (radially symmetric) model and 
subscript f designates values in the plane (flat) model. The density ρ transformation is 

 ρ f = R
R − zr
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⎠ 
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m

ρr , (2) 

which is not unique since m can take any value between -5 and 1. For regional body-waves, the choice of m is not 
critical (Müller, 1977). We choose m = -1 for P/SV simulations (Müller, 1977) and m = -5 for SH simulations 
(Chapman, 1973). We experimented with different values of m and the results were basically unchanged. Finally the 
transformation of amplitudes calculated from plane-model simulations back to corresponding amplitudes in the 
spherical model is 

 Ar = Δ
sinΔ
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m +5
2

Af , (3) 

where Zr is the depth of the source in the spherical model and Δ is epicentral distance in radians. 
 
We approximate the velocity gradient resulting from the EFT (Equations 1 and 2) with homogeneous layers in the 
plane Earth model, as is required by the reflectivity method. The thickness of these layers affects the accuracy of the 
approximation, with thinner layers yielding more accurate results. We set the thickness of these layers to be about 
0.4 of the minimum wavelength of the waves to be modeled, which appears to be more than adequate. Further 
reducing the ratio (e.g., from 0.4 to 0.2 of the minimum wavelength) does not alter the results appreciably. The total 
thickness of the gradient zone is set to be more than 100 km larger than the maximum penetration depth of the direct 
wave in a homogeneous spherical model recorded at the longest epicentral distance considered. This thickness 
guarantees that no Pn or Sn waves observed within the distance range of interest are affected by the lower boundary 
of the gradient zone. Below the gradient zone, the velocity is constant. 
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We use the same generic spherical Earth model considered by Sereno and Given (1990) as the base model for our 
simulations and use the synthetics from the simulation to derive parameters of the Pn and Sn geometric-spreading 
models that we develop. The reference Earth model consists of a 40-km-thick outer layer, representative of an 
average continental crust, with a constant-velocity mantle underneath (Figure 1). The model has no anelastic 
attenuation. The simplicity of this model allows us to isolate the effects of the sphericity on Pn and Sn geometric 
spreading. We use an isotropic point source for Pn simulations. The source for Sn(SH) simulations is a fundamental 
fault vertical strike-slip source and the source for Sn(SV) simulations is a dip-slip source. For all source types in our 
main calculations, a delta function is used as the source time function; source depth is 15 km and source strength is 
1015 N m. Three-component synthetic ground displacements are computed at 33 locations distributed log-evenly 
along a linear profile from 200 km (1.8°) to 2500 km (22.5°). The Nyquist frequency of the seismograms is 20 Hz. 

 

 
Figure 1. Base Earth model used for Pn and Sn simulations and the development of new Pn and Sn geometric-

spreading models. Quality factor Q is infinite throughout the model. 
 

We cut Pn and Sn portions of the synthetic seismograms using fixed-velocity windows. The velocities that we use to 
define the widths of Pn windows are 7.6 km/sec and 8.2 km/sec and those for Sn windows are 4.0 km/sec and 4.7 
km/sec (Hartse, et al., 1997). The windows are centered at the peaks of the phases. We also tested a fixed-window-
width method and the results remained essentially the same. We window Pn and Sn(SV) from vertical-component 
seismograms and Sn(SH) from transverse-component seismograms. After Pn and Sn seismograms are windowed, we 
taper the seismograms with small tapers (between 2% to 20% depending on the length of the signal relative to the 
window length) and Fourier transform the seismograms to obtain the amplitude spectra. We make spectral-
amplitude measurements at 100 frequencies log-evenly distributed between 0.75 and 13 Hz. Amplitude at each 
frequency fi is calculated by taking the average of the amplitudes between frequencies fi/ 2  and 2 fi. 
 
To accurately assess the geometric spreading of seismic phases, the propagation medium used for the simulation 
should have no attenuation. However, in order to avoid a computational singularity, the reflectivity method requires 
a nonzero amount of attenuation for the medium. We take an asymptotic approach similar to that used by Yang 
(2002) to derive Pn and Sn amplitudes for an elastic model without attenuation from amplitudes calculated for a 
group of anelastic models. We first make 20 calculations for models that have attenuation quality factor Q log-
linearly increasing from 10,000 to 100,000. For each calculation, a single Q is used for both P and S waves and for 
all parts of the model. Amplitudes at each frequency and each epicentral distance from these calculations are then fit 
by a quadratic polynomial as a function of 1/Q. The limit of the polynomial as Q approaches infinity is taken as the 
amplitude at that frequency and distance for the elastic model. 

 
Pn Modeling Results 
 
Figure 2 plots the vertical synthetic Pn seismograms from the base-model simulation at selected epicentral distances. 
Q used in this simulation is 100,000. The seismograms are low-pass filtered below 10 Hz to suppress numerical 
noise near the Nyquist frequency. The figure reveals several interesting characteristics of Pn traveling in a spherical 
Earth model with constant mantle velocities. Due to the sphericity, the apparent Pn velocity is not constant, but 
varies with epicentral distance. As is predicted by theory (e.g., Červený and Ravindra, 1971), the pulse shape of Pn 
evolves from that of the impulse source at distances close to the critical distance (about 0.8° for the base model and 
a 15-km-deep source) to the shape of a far-field body wave, which is the time derivative of the source pulse, at 
farther distances. The amplitude of the phase changes in a complex manner, first decreasing and then increasing, 
within this distance range. At about 10° to 12°, the first pulse separates from the rest of the Pn wave packet and 
somewhere between 16° and 19°, a second pulse separates. 
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Figure 2. Synthetic Pn seismograms from base-model calculations. The seismograms are filtered below 10 Hz. 

Travel time is reduced by 8.2 km/sec. Only every other trace calculated is plotted to enhance 
clarity. r is epicentral distance in kilometers. 

 
For high-frequency Pn at distances away from the critical distance, Červený and Ravindra (1971) offer a detailed 
decription of the signal behavior from ray theory. Although Červený and Ravindra (1971) describe the phenomenon 
for a plane-layered Earth model with positive and constant velocity gradient in the mantle, their description and 
conclusions are applicable to the spherical-Earth-model situation as well since the spherical model can be mapped, 
through the EFT, into a plane-layered model with an approximately constant velocity gradient in the uppermost 
mantle. Following Červený and Ravindra (1971), the Pn phase at distances between about 5° and 10° in Figure 2 can 
be thought of as the superposition of individual waves reflected n times (n = 0, 1, 2, …) from the underside of the 
Moho. The superposed wave is termed interference head waves by Červený and Ravindra (1971) and is likened to 
the “whispering gallery” phenomenon by Menke and Richards (1980). As distance increases, individual components 
of the interference head wave start to separate from the wave packet due to their increasingly shorter path lengths 
compared with path lengths of the remaining waves in the wave packet. The first wave to separate is the wave that 
has no reflection at the Moho (the direct or diving wave). This is evidenced as the separation of the first pulse in 
Figure 2. The second separated pulse in the figure is the wave that is reflected once from the Moho. From ray 
theory, the epicentral distance at which the k-time reflected wave separates from the interference head-wave packet 
is (Červený and Ravindra, 1971, Eq. 6.4) 

 rk = (2H − d) vc
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, (4) 

where H is crustal thickness; d is source depth; vc is P-wave velocity of the crust; vm is P-wave velocity at the top of 
the mantle; T is pulse width of the wave and g is velocity gradient (dv/dz) at the top of the mantle resulting from the 
EFT. From Equation 4 and for the base model, a wave with a pulse width of  about 0.1 second (10-Hz) that 
undergoes no reflection at the Moho will separate at about 9.8° and the wave that has one reflection will separate at 
about 16.6°. These predictions are consistent with the synthetics in Figure 2. 
 
Figure 3 shows the amplitude spectra of synthetic Pn at the same epicentral distances as those in Figure 2 from the Q 
= 100,000 computation. The figure illustrates the evolution of Pn spectrum from proportional to the source spectrum 
to proportional to the time derivative of the source spectrum. 
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Figure 3. Amplitude spectra of Pn at the same distances as those in Figure 2. Some of the distances are 

marked on the left of the corresponding spectra. 
 
 
As was described above, we use an asymptotic method to derive spectral amplitudes for an elastic model from 
amplitudes obtained using anelastic simulations. Figure 4 gives an illustration of the method. Plotted in the figure 
are Pn amplitudes at different frequencies measured from calculations using different quality factors. The amplitudes 
are computed at 22.5° epicentral distance and are normalized by the maximum amplitude in the figure. Quadratic 
polynomial fits of the amplitudes are plotted as solid lines. The polynomial fits are almost perfect, indicating that 
our approach is appropriate. Amplitudes at other distances are fit as well as those shown in Figure 4. 

 
 

 

 
Figure 4. An illustration of how elastic results are obtained from anelastic calculations. Circles are 

amplitudes at 22.5° epicentral distance for different frequencies plotted against Q used in their 
calculations. The amplitudes are normalized by the maximum amplitude in the plot, which is the 
10.03-Hz amplitude from the Q = 100,000 calculation. Solid lines are corresponding quadratic 
polynomial fits of the amplitudes. Numbers on the right are the limits of normalized amplitudes at 
corresponding frequencies as Q approaches infinity. 

 
To visualize the Pn amplitude decay in a spherical Earth model, we plot 10-Hz Pn amplitudes for the base model in 
Figure 5. We extend the epicentral-distance range to between 135 km (1.2°) and 8000 km (71.9°) for this particular 
simulation in order to better depict the evolution of Pn waves. Amplitudes at distances beyond about 20° are 
measured from the direct wave that has been completely separated from the interference head waves. The 

29th Monitoring Research Review:  Ground-Based Nuclear Explosion Monitoring Technologies

104



 

 

amplitudes are corrected for the free-surface effect, which is only important at teleseismic distances. Also plotted in 
the figure are the amplitude decay of a conical head wave in a plane one-layer-over-half-space model (Aki and 
Richards, 2002; Eq. 6.26) and the amplitude decay of infinite-frequency direct wave in a spherical Earth model from 
ray tracing. At distances close to the critical distance, Pn geometric spreading behaves like that of a conical head 
wave. As distance increases, Pn spreading starts to deviate from that of the head wave and at about 5°, Pn amplitudes 
begin to increase. As was mentioned before, 10-Hz direct-wave energy would separate from the rest of the 
interference head wave at about 10°. It seems from the figure that this separation is manifested in a change in the 
smoothness of the Pn amplitude variation followed by a reduced rate of amplitude increase. In the range beyond the 
critical distance and before the direct-wave separation, Pn evolves from a wave similar to a conical head wave to the 
interference head wave, which is a superposition of multiple waves reflected from the Moho. As the epicentral 
distance approaches teleseismic distances, the direct-wave spreading approaches that of the infinite-frequency wave 
from ray tracing results, as is expected. The direct wave dominates the whole Pn wave packet at long distances. We 
do not see significant difference between spectral amplitudes obtained by windowing the whole Pn wave packet and 
those obtained by just windowing the direct wave after its separation from the packet. This is consistent with 
theoretical predictions (Červený and Ravindra, 1971). 
 
 

 
 
Figure 5. 10-Hz synthetic Pn amplitude decay in a spherical Earth model with constant mantle velocities. The 

solid line depicts the theoretical amplitude decay of a conical head wave in a plane one-layer-over-
half-space Earth model. The dashed line is the amplitude decay of infinite-frequency direct wave in 
a spherical homogeneous Earth model from ray-tracing calculations.  

 
 
Pn geometric spreading in a spherical Earth model is not only different from that of a head wave as is shown in 
Figure 5, but also frequency dependent. Figure 6 shows the Pn amplitude-variation surface as a function of distance 
and frequency for the base model. The strong frequency dependence of the amplitudes is apparent. Amplitudes at 
higher frequencies are affected more by the sphericity than are lower-frequency amplitudes. The separation distance 
of the direct wave from the interference head waves becomes shorter as frequency becomes higher (Equation 4).  
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Figure 6. Synthetic Pn amplitudes as a function of epicentral distance and frequency. 
 

 

A New Pn Geometric-Spreading Representation for a Spherical Earth Model 

Figures 5 and 6 illustrate that a frequency-independent, power-law model cannot accurately represent Pn geometric 
spreading in a spherical Earth model. Such a representation would plot as a straight line in Figure 5, which is clearly 
inappropriate for modeling Pn geometric spreading over a wide distance range. In addition, a power-law model with 
constant exponent does not take into account the frequency dependence of Pn spreading shown in Figure 6. Based on 
the Pn amplitude-decay behavior shown in Figures 5 and 6, we propose a new empirical Pn geometric-spreading 
model that fits the synthetic data much better and that also results in more reasonable anelastic-attenuation estimates 
from observed data, as we will discuss in more detail in the next section. 
 
The amplitude spectrum of Pn can be parameterized as 

 A(r,θ, f ) = K( f )M0R(θ)G(r, f )exp − πf
Q( f )v

r
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with the new geometric-spreading model expressed as 
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⎟ + ni3 (i = 1, 2, 3; f0 = 1 Hz). (7) 

In Equation 5, K is a frequency-dependent scaling factor; M0 is source moment; R is source radiation pattern; Q is Pn 
quality factor; v is Pn velocity; S is receiver site response; r is epicentral distance; θ is azimuth angle and f is 
frequency. r0 and f0 are included in Equations 6 and 7 in order for the new model to have the same dimension as 
standard power-law models (e.g., Street et al., 1975; Sereno et al., 1988). The main differences between the new 
geometric-spreading model (Equations 6 and 7) and the standard frequency-independent power-law model are the 
addition of the first term in the exponent and the frequency dependence of parameters ni. In the logarithm domain, 
the new model is a quadratic function of log-distance, whereas the power-law model is linear. The reason for 
choosing a log-quadratic function is to keep the parameterization as simple as possible while providing a good fit to 
the synthetics. The adoption of a quadratic functional form for ni (Equation 7) is based on the behavior of ni versus 
frequency obtained by fitting Equation 6 to synthetic Pn amplitudes at individual frequencies. 
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If we take common logarithm of Equation 6, substitute Equation 7 into the result and let r0 and f0 equal one, we 
obtain 

 

log G(r, f )[ ]= n11(log f )2(log r)2 + n12 log f (logr)2 + n13(log r)2

−n21(log f )2 log r − n22 log f log r − n23 logr
+n31(log f )2 + n32 log f + n33

, (8) 

where r is in kilometers and f is in hertz. To derive coefficients nij, we fit Equation 8 to synthetic Pn amplitudes 
shown in Figure 6 in a least-squares sense. Pn amplitudes are corrected for M0 used in the simulation (1015 N m) and 
K before the fitting. Since the source that we use in the simulation has a flat spectrum, K is frequency independent. 
We use K = (4πρv3)-1 (Denny and Johnson, 1991), where ρ is density and v is P-wave velocity of the source region. 
Source radiation and site response are unity. We use Pn amplitudes at epicentral distances beyond 300 km (2.7°) and 
before the start of the direct-wave separation to fit the model. We use 300 km as the lower distance limit because 
reliable Pn observations are typically made at some distances beyond the Pg crossover distance (~200 km). The 
choice of 300 km is also to avoid possible long-period numeric-noise contamination at short distances, as is 
indicated in Figure 6. The upper distance limits are based on the observation that within these distances, Pn is the 
result of the interference of all of its components including the direct wave. At larger distances, the direct wave 
separates from the rest of the wave packet and the characteristics of Pn become different. The Pn amplitude decay 
within the defined distance range also has a smooth pattern and thus is easier to fit by a simple mathematical model. 
The upper distance limits vary from 7.3° to 17.3° for the frequency range between 13 and 0.75 Hz. Within the 
specified distance limits, the new spreading model is applicable. Since at about 15°, Pn in the real Earth is overtaken 
by upper-mantle triplications resulting from reflections and refractions at 410-km and 660-km discontinuities and is 
no longer the first arrival, Pn is usually used within the distance range where the new spreading model is valid for 
frequencies below about 2 Hz. For higher frequencies, the range-of-applicability of the new model is shorter, but 
observationally high-frequency signals are generally only detectable above the noise level at shorter distances. 
Coefficients nij (i = 1, 2, 3; j = 1, 2, 3) from the fitting are listed in Table 1. The inclusion of r0 and f0 in the model 
also guarantees that even though the values of the coefficients are derived using Equation 8 with r in kilometers and 
f in hertz, they are valid for r and f in any units as long as r0 and f0 are converted accordingly. 
 
Table 1 Coefficients of the new Pn geometric-spreading model 

n11 n12 n13 n21 n22 n23 n31 n32 n33 

-0.217 1.79 3.16 -1.94 8.43 18.6 -3.39 9.94 20.7 
 
Application to Observed Data 

 

The key value of any mathematical model of the physical world is for the model to be able to provide physically 
reasonable descriptions of observed data. To test the validity and usefulness of the new Pn geometric-spreading 
model and the associated choice of a constant-velocity mantle lid structure, we correct a set of observed Pn spectral 
amplitudes for geometric spreading with the new model and estimate the average medium attenuation. We then 
compare the results with those published in the literature. 

We represent observed Pn amplitudes by Equation 5. For the purpose of testing the new Pn geometric-spreading 
model, we simplify Equation 5 by assuming that site response is unity for all stations and source radiation patterns 
can be ignored. We presume that errors introduced by these simplifications are random and should not affect 
average-attenuation estimates systematically. With known or estimated source moments, an assumed scaling factor 
K and a Pn geometric-spreading model, we can estimate the average attenuation quality factor at each frequency by 
least-squares fitting the logarithm of source and geometric-spreading corrected spectral amplitudes as a function of 
epicentral distance. 
 
The observed Pn amplitudes are measured on vertical-component ground-displacement data recorded by stations in 
and around China and in southern Europe for events in the same region. The same windowing method as the method 
we employ to measure the synthetic Pn amplitudes is used. Analyst picks reported in global catalogs (ISC, EDR, 
REB, EHB, etc.) are used to center the Pn windows. We derive source moments from body-wave magnitudes (mb). 
We only use amplitudes from events with mb equal to or smaller than 6 to avoid magnitude saturation. We use a 
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simplified version of the scaling factor K expressed as K(f) = {4πρv3[1+(f/fc)2]}-1 using crustal P-wave velocity and 
density of the base Earth model as v and ρ. Source corner frequency fc is calculated from source moment using the 
relationship logM0 = 17.08-3.24logfc derived by Xie and Patton (1999) from Pn amplitude data recorded in central 
Asia. For comparison, we use both the new Pn geometric-spreading model and the power-law model with two 
different exponents, -1.1 (Walter and Taylor, 2002) and -1.3, in the attenuation estimation. When the new spreading 
model is used, we limit the epicentral distances of the amplitudes used in the estimation to within the distance range 
where the model is valid. For power-law model corrections, we use amplitudes between 300 km (2.7°) and 1668 km 
(15°). Attenuation is estimated at 0.75, 1.0, 2.0, 4.0 and 6.0 Hz. The new spreading model is used in the correction. 
Although the amplitudes show a large scatter, a linear decay trend due to realistic values of medium attenuation is 
discernable. 
 
Table 2 lists estimated average quality factors using different geometric-spreading corrections from observed  
Pn amplitudes. Using the power-law spreading model results in some negative values at low frequencies. At high 
frequencies, the power-law model yields estimates that range from over 1000 to over 5000. On the other hand,  
Q estimates using the new spreading model are positive and below 700 at all frequencies. These values can be 
compared with published P-wave quality factors in the mantle lid, as we discuss below. 
 

Table 2 Average Pn quality factor estimated using different geometric-spreading models 

 data frequency (Hz) 

 0.75 1.0 2.0 4.0 6.0 

new model 440 338 312 557 678 

power-law model 1* -1669 9241 1206 2204 3450 

power-law model 2** -734 -2153 1850 3260 5246 
*  model with exponent of -1.1 
** model with exponent of -1.3 

 

Using theory, observed body-wave spectra and waveform modeling, Lundquist and Cormier (1980) derive generic 
absorption-band P-wave Q models for the mantle. The Q values of these models range from about 100 to 500 for 
frequencies between 0.7 Hz and 6.0 Hz in the depth range of 45 to 200 km. In their paper, Lundquist and Cormier 
(1980) also cites results of some other Q studies that use free-oscillation data, long-period surface waves and high-
frequency (1-5 Hz) body waves. The frequency-independent P-wave Q models from these studies have values from 
about 100 to 250 for depths between 50 and 150 km. Der et al. (1986) construct a P-wave Q model for the Eurasian 
Shield using a large set of teleseismic body waves. Their model has values between about 350 and 900 for 
frequencies between 0.3 and 10 Hz at depths between 100 and 200 km. Above 100 km, Q values increase to between 
600 and 1500 for the same frequency range. 
 
More recently, some studies make direct Pn Q estimations. Sereno et al. (1988) and Sereno (1990) obtain Pn Q 
models for Scandinavia and eastern Kazakhstan respectively by inverting broadband Pn spectra.  
The 0.75- to 6-Hz Pn Q values that they estimated are between 283 and 768 for Scandinavia and between 260 and 
735 for eastern Kazakhstan. Although Sereno et al. (1988) and Sereno (1990) assume a power-law Pn geometric-
spreading model with an exponent of -1.3, their Pn Q estimates are more in line with the average Pn Q estimates that 
we obtain using the new Pn spreading model than with those from power-law model corrections (Table 2). A 
possible explanation for this observation is that the majority of their data are recorded within 1000-km epicentral 
distance. At short distances, the power-law spreading model has a gentler slope than the new spreading model does 
and therefore would yield smaller Q estimates from short-distance data. However, for a broader distance range such 
as the distance range that our dataset covers, the power-law model yields larger, sometimes negative, Q estimates 
because of the steeper slope of the model at long distances. The implication is that if a power-law Pn spreading 
model with a specific exponent is used, it will only be applicable as an approximation in a limited distance range and 
models with different exponents are needed for different distance ranges. Our parameterization remedies this failing. 
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Comparing Q values in Table 2 with those published in the literature, we conclude that the new Pn geometric-
spreading model yields Q estimates that are generally consistent with published results over the broad region of 
Eurasia. The Q estimates with power-law model corrections, on the other hand, have values that are either negative 
or seem to be too large. It should be noted that Q values estimated in this fashion represent only the average Pn 
attenuation behavior over the broad region of Eurasia. They may not be accurate for any particular region due to the 
deviation of the uppermost-mantle velocity structure, including any non-zero mantle lid velocity gradient or lateral 
heterogeneity, from the constant-velocity structure that we use to develop the geometric-spreading model. The fact 
that we obtain reasonable Q values for data spanning a large distance range demonstrates that our reference model at 
least provides reasonable average behavior without any peculiarities such as negative Q values. 
 
Sn Simulations 
 
In addition to simulating Pn propagation in a spherical Earth model, we also simulate Sn propagation in the same 
base model. Except for different source types and different slowness integration limits, other modeling parameters in 
the Sn simulation are kept the same as those used in the Pn simulation. The behavior of Sn in a spherical Earth model 
is very similar to the behavior of Pn waves. The only difference is that the separation of individual waves from the 
interference wave packet occurs at shorter distances for Sn. This difference can be predicted using Equation 4, 
although the equation was originally derived only for Pn waves. Sn(SH) spectral amplitudes also form a surface with 
a shape similar to that of the Pn amplitude surface shown in Figure 6. 
 
Because of the similarities between Pn and Sn propagation in a spherical Earth model with constant mantle 
velocities, we propose an Sn geometric-spreading model that has the same functional form as that of the new Pn 
spreading model (Equations 6 and 7). We derive the values of the coefficients nij by fitting synthetic Sn(SH) 
amplitudes. Sn(SV) amplitudes are severely contaminated by P-wave energy up to 1000 km, and thus are not suitable 
for fitting. Beyond 1000 km, Sn(SV) and Sn(SH) amplitudes decay similarly. It suggests that the Sn spreading model 
developed by fitting Sn(SH) amplitudes is also suitable for describing Sn(SV) geometric spreading. 
 
We correct synthetic Sn(SH) amplitudes for source moment, source radiation pattern, and the scaling factor K before 
the fitting. We use K = (4πρv3)-1, but now v is S-wave velocity of the crust. We again set the lower-distance limit to 
300 km (2.7°) for amplitudes used in the fitting. The upper distance limits are from 6.2° to 14.4° for frequencies 
from 13 Hz to 0.75 Hz. The limits set the distance range within which the Sn spreading model is valid. Table 3 lists 
the coefficients nij for the Sn geometric-spreading model from the fitting. 

Table 3 Coefficients of the new Sn(SH) geometric-spreading model 

n11 n12 n13 n21 n22 n23 n31 n32 n33 

-0.347 2.16 3.54 -2.69 10.1 20.4 -4.38 11.7 23.1 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
The new Pn and Sn geometric-spreading models are useful in common situations where only simple velocity models 
with uppermost-mantle structure represented as constant-velocity half space or a stack of constant velocity layers are 
available. If the mantle-lid velocity gradient is well resolved in a given region, which is sometimes the case, 
simulations for that gradient can be performed to obtain appropriate geometric-spreading corrections. Since the 
effect of sphericity is equivalent to the effect of a positive velocity gradient in a plane-layered model, we anticipate 
that the functional form of our geometric-spreading models will remain the same for Earth models in which an 
effective (physical plus effects of the sphericity) positive velocity gradient exists. Only the coefficients will differ. 
Of course, any Q determinations will trade-off directly with errors due to having the wrong velocity model, and if 
one can determine specific structural parameters they should be used to make specific geometric spreading terms. 
 
Quantifying the effects of specific mantle-lid velocity gradients, Moho irregularity and lateral velocity heterogeneity 
in the uppermost mantle on Pn and Sn geometric spreading through 2D and 3D numerical modeling will be the 
subject of a separate study. It is reasonable to assume that except for the case of different lid velocity gradients, 
many effects will contribute primarily to scatter around the fundamental behavior of our geometric-spreading 
models. 
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