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ABSTRACT 
 

The objectives of this project are to develop, test, and validate methodologies that improve location uncertainties in 

the presence of correlated, systematic model errors and non-Gaussian measurement errors. Un-modeled lateral 

heterogeneity in the Earth introduces systematic correlated travel-time errors that bias locations derived from 

unbalanced networks. Furthermore, emergent arrivals, noise bursts, and other blunders introduce non-Gaussian 

errors not properly modeled by standard least-squares location procedures.  

In the previous year we presented a method based on copula theory to estimate the spatial correlation structure in 

arrival-time data. Based on these models, we have incorporated the full covariance matrix weighting into a standard 

linearized least-squares location algorithm. We have developed and validated generic variogram models  

(regional and teleseismic) using globally distributed clusters of GT5 events identified by the Global Ground Truth 

project (FA8718-4-C-0020). These models may be used as conservative correlation estimators to generate the full 

data covariance matrix for regions where there are insufficient data to estimate a variogram. We have demonstrated 

improvements in both locations and uncertainty estimates by accounting for correlated, Gaussian errors. While  

un-modeled location biases remain, location estimates are less sensitive to unbalanced network configurations. 

Coverage statistics are significantly improved for a wide range of number of defining phases with the improved 

error ellipses. 

We have refined and tested our signal-to-noise ratio (SNR)-based measurement error model and developed a 

measurement error model using body wave magnitude (mb) as a substitute for SNR. We have incorporated both 

measurement error models into our standard linearized iterative least-squares algorithm. The increased variance and 

bias (late pick) for small events is quantified as a family of distributions dependent upon observed or expected SNR. 

Since the measurement errors now describe a non-Gaussian model, the standard least-squares location algorithm 

may no longer be optimal. 

Our research now focuses on exploring alternative objective functions (lp-norms) and regression algorithms that 

exploit both the spatial correlation models and the new non-Gaussian error models for improved location 

uncertainties. We show Monte Carlo comparisons contrasting Gaussian and non-Gaussian skewed distributions. A 

preliminary network geometry stability or quality criteria is proposed that predicts the sensitivity to non-Gaussian 

errors. 
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OBJECTIVES 

The objectives of this project are to develop methodologies to estimate location uncertainties in the presence of 

correlated, systematic model errors and to characterize non-Gaussian measurement errors as a function of signal 

parameters such as SNR or network magnitude, a surrogate for SNR. The improved understanding of a correlated 

Gaussian error budget described by a full covariance matrix is now incorporated into a linearized location algorithm 

leading to more robust estimates of location uncertainty. The ultimate goal of this project is to develop transportable 

Gaussian and non-Gaussian error models that will provide reliable location uncertainty estimates for small events 

recorded by sparse or dense, balanced or imbalanced networks. 

RESEARCH ACCOMPLISHED 

The motivation for this project is the observation that location uncertainty estimates are often underestimated; error 

ellipses scaled to the 90% confidence level do not contain 90% of the true locations. This is due to violation of the 

assumptions of normally distributed independent observations commonly made by standard linearized location 

algorithms. Due to unaccounted velocity heterogeneities, similar ray paths produce systematic travel-time prediction 

errors and lead to correlated error structures. Furthermore, picking residuals are non-Gaussian and better described 

by skewed, heavy-tailed distributions. Phase picks suffer from systematic errors as onset times along the same ray 

paths are systematically picked late with decreasing event size, or more precisely, with decreasing SNR  

(e.g., Douglas et al., 1997, 2005a, 2005b). Douglas et al. (2005a) point out that automatic detections are more likely 

affected by the systematic errors than are manual picks made by experienced analysts. These systematic reading 

errors introduce location biases for smaller events. 

In this project we focus on the treatment of correlated errors combined with non-Gaussian, non-zero-mean,  

heavy-tailed, skewed distributions of reading errors. Figure 1 illustrates our research strategy. During the first year 

of the project (Bondár et al., 2006a), we developed a new, copula-based methodology to estimate variograms. The 

variogram models were used to construct the network covariance matrix, which describes the correlated travel-time 

structure due to un-modeled path effects along similar ray paths. We incorporated the full data covariance matrix 

into an existing linearized iterative least-squares (ILS) algorithm and demonstrated improvements both in location 

and coverage with increasing numbers of defining phases or imbalanced networks. This year we concentrated our 

efforts on developing improved models of picking error bias and variance as a function of SNR and network 

magnitude. By exploiting new ground truth events produced by our related GT project (Bondár et al., 2007), we 

have developed generic, transportable variogram models for regional Pn and teleseismic P phases that can be used to 

construct network covariance matrices anywhere on the globe. 
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Figure 1. Progress and strategy of research. Gray indicates existing state of the art, Green completed work, 

and Yellow future work. Year 1 culminated in an ILS algorithm that utilized a full covariance 

matrix based on new variogram models for improved location uncertainty. Year 2 completed 

validation tests for implementation of new picking error models and new generic variogram models. 
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Measurement Error Models  

It has long been noted that arrival time errors 

depend on SNR (Freedman, 1966; Lomnitz, 

1995). Low SNR arrival times tend to be read 

late and have increasing variance  

(Douglas et al., 2005b). Lateness in low SNR 

readings is not accounted for in standard 

locations of seismic events. However, arrival 

times for a given event read at stations with 

varying SNRs may, as Douglas et al. (2005b) 

point out, contribute to bias in the epicenter 

estimate. Delays in arrival readings have not 

been accounted for simply due to lack of reported 

SNR. Indeed, as Douglas et al. (2005b) observe, 

few actual estimates of reading error 

characteristics—delay, variance, distributions - 

have been published. Digital recording with 

associated automatic processing affords 

opportunities to characterize reading errors as a 

function of SNR as well as other signal attributes. 

For example, the International Data Centre (IDC) 

employs a priori variances for arrival time 

variance as a function of SNR—for both 

automatic and analyst picks; the SNR is defined as the ratio of the short-term average/long-term average of the 

detecting beam. The IDC makes, however, no assumption about lateness or bias in arrival times. Figure 2 illustrates 

that once path effects are removed, a trend of increasingly late picks with decreasing event size emerges. 

SNR-based picking error model  

Our goal is to develop improved models of both bias and variance in reading errors as a function of SNR. To 

accomplish this goal, we follow a double-difference approach. We assume that arrival times with corresponding 

SNR estimates from a network of stations are available from an event cluster of GT events. We write the arrival time 

at station i from event x as 
ix

delay

ix

path

i

pred

ixxix tttOTt  , where 
xOT  is the origin time of event x, pred

ixt is 

the predicted (IASPEI91) travel time, 
path

it , is the path effect (station term), delay

ixt  is the pick delay and 
ix  is a 

random picking error. We assume only delay

ixt  and 
ix  are functions of SNRix. By forming selected double 

differences, the origin times and systematic station terms may be canceled: 
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The right hand side of the equation can be calculated from the observed arrival times and the predicted travel times. 

The mean delay and the total variance (assuming that the travel-time prediction errors are more or less the same) are 

written as )()()( delay
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For sufficiently large SNR values we assume the pick delay and its variance approach zero. Thus, if all four readings 

have large SNR, the total variance gives us an estimate of the model error variance. This allows us to get an estimate 

of the variance of reading errors when all four readings have small SNR: 

4/)4()( arg eSNRl

hypo

total VarVarSNRVar  . Now let us presume that three of the readings have large SNR, and one 

has a small SNR. Then the mean delay simply becomes )()( SNRsmalldelaydelay tSNR  . Hence, the double-difference 

(DD) approach, with proper data selection, provides a methodology to derive models of bias and variance in picking 

errors. 

To establish SNR-dependent models of delay and variance, we used first-arriving P from 12 HDC-RCA clusters  

(see Bondár et al., 2006b, 2007) with SNR ≥ 3 reported in the PIDC/IDC REB. We calculated all possible DDs in 

 
Figure 2. Median Pn station residuals with regard to GT0 

locations of Yucca Flat explosions from CUB2 

model predictions. Picks are systematically late 

with decreasing event size. 
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each cluster and selected two subsets for each cluster. One subset consisted of the DD residuals for which the SNRs 

of all four arrivals were within a factor of 2. Figure 3a shows the DD residuals for this subset as a function of 

median SNR, as well as the scaled median absolute deviation (SMAD) of residuals along moving SNR windows. 

The other subset included DD residuals with the three largest SNR ≥ 40. The DD residuals are plotted as a function 

of minimum SNR in Figure 3b. The running median (dashed curve) is the estimate of reading error bias as a function 

of SNR. 

    

Figure 3. a) DD residuals where all four SNR are similar. The running SMAD (blue curve) represents the 

estimate of total variance. b) DD residuals where the SNR of three arrivals is large and the SNR of 

one arrival is small. The running median (red) provides an estimate of the reading error bias. 

Recall that the running SMAD 

in Figure 3a is an estimate of 

the total variance in the DD 

residuals which includes the 

background variance of  

travel-time prediction errors. 

We estimate Varhypo from the 

second subset as the variance 

of DD residuals where the 

minimum SNR is larger than 

40. This gives us an estimate 

σHypo = 0.24s which has to be 

removed from the total 

variance estimates in order to 

get an estimate of the reading 

error variance. Our resulting 

model for reading error bias 

and variance is shown in 

Figure 4. 

In the linearized ILS location 

algorithm the bias is 

implemented as a travel-time correction, while the variance is added to the main diagonal of the network covariance 

matrix. 

Note that the International Monitoring Station (IMS) being a sparse, teleseismic network, the SNR-based 

measurement error model is dominated by teleseismic P phases, which explains the relatively small delays even at 

very low SNR values. As Figure 2 suggests, delays are expected to be much larger for regional phases. 

The mb-based picking error model  

Currently only the IDC Reviewed Event Bulletin reports SNR estimates for arrival picks, and as we indicated above, 

there is insufficient data to derive SNR-based error models for phases other than teleseismic P. Thus, the SNR-based 

error model has a very limited scope for practical application. To develop a measurement error model that can be 

 
Figure 4. SNR-dependent model for pick delay and standard deviation. 

a) b) 

Bias(SNR) 

2/)(4))(()( 22 HypoSNRmedianSNR  
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used for the vast majority of events with no reported SNR estimates of phase arrivals, we decided to use network 

magnitude as a surrogate for SNR. Network magnitude is admittedly a crude surrogate for mb, but at least it is 

reported for most events. 

We used events from Yucca Flat and Pahute Mesa with network 

magnitudes (4< mb < 6) reported in the International 

Seismological Centre (ISC) bulletin to derive mb-based models 

of reading error bias and variance. We fit the measurement error 

model for first-arriving P phases as a smooth function of 

epicentral distance and mb. Figure 5 shows our mb distance 

based model. Not surprisingly, the picking delay is largest at far 

regional distances. For teleseismic distances, the bias estimates 

are smaller and show good agreement with those predicted by the 

SNR-based model. 

Figure 5 suggests that the effect of phase pick delays on event 

locations with decreasing magnitude may be negligible for 

teleseismic networks, but cannot be ignored for local and 

regional stations. Note that the mb-based measurement error 

model assumes that path effects are largely accounted for; 

therefore they should properly be used in conjunction with 

source-specific station corrections (SSSCs) or other path 

corrections. 

Figure 6 shows relocations of GT0-2 explosions from various 

event clusters with and without SSSCs and mb-delay corrections 

using regional Pn only. The SSSCs were calculated from CUB2 

(Shapiro and Ritzwoller, 2004) travel-time predictions relative to 

IASPEI91 (Kennett and Engdahl, 1991) predictions. The 

calibrated travel times are primarily responsible for location 

improvements, although they suffer from some remaining regional biases. The effect of mb-delay corrections is less 

obvious, but nonetheless significant. The amplitude of the mb-delay corrections is much smaller than those from the 

SSSCs; therefore, they only move events by 1 or 2 kilometers maximum which is typically less than the accuracy of 

the GT0-2 event locations. However, they do tend to tighten event clusters, by moving smaller events closer to 

larger ones. 

 

Figure 6. Relocation of GT0-2 event clusters using a) IASPEI91 baseline travel times and b) CUB2  

travel-time predictions with mb-based delay and variance model. Events are colored according to 

 
Figure 5. An mb-based model of bias (a) and 

variance (b) for reading errors. 

b) 

a) 

b) a) IASPEI91 CUB2 + mb-delay 
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their cluster. Individual clusters tend to individually coalesce with application of the CUB2 and  

mb-delay corrections. 

Generic Variogram Models 

Last year we demonstrated utility of source region specific teleseismic P and Pn correlation structures. Nearly all 

source region specific teleseismic P variograms were similar and could generally be interchanged. Pn variograms 

demonstrated more diversity with 

source region and could not be 

interchanged. We additionally 

showed that once the bulk of the 

path effects are removed by 

calibration, it is possible to develop 

generic, transportable variogram 

models for both teleseismic P and 

Pn that may work well anywhere on 

the globe. We calculated Pn and P 

variogram models using our copula 

methodology (Bondár et al., 2006a) 

for all GT5 clusters from the global 

GT project (Bondár et al., 2007). 

For Pn and P calibration we used 

CUB2 (Shapiro and Ritzwoller, 

2004) and Harvard  

(Antolik et al., 2003) SSSCs, 

respectively. Figure 7 shows the Pn 

and P variogram models obtained 

from GT residuals after calibration. 

The fact that the variograms look 

quite similar indicates that the 

CUB2 and Harvard global 3D 

models indeed account for major 3D heterogeneities. Consistent with previous results the calibrations reduced the 

overall variance (the sill) by just under 50%. Nevertheless, un-modeled velocity structures remain that generate 

correlated travel-time residuals. Because the calibrated travel times now account for the bulk of 3D Earth structure, 

it allows us to derive an isotropic variogram model not just from the individual clusters, but from the entire data set 

of globally distributed GT5 or better events. These models, shown as red lines on Figure 7, define generic Pn and P 

variograms that can be used to construct network covariance matrices for calibrated regions. 

Validation Tests 

To validate the generic calibrated error models (described by the network covariance matrix we generate from the 

transportable variogram models) as well as the mb/SNR-dependent delay correction and measurement error models 

we used over 2,000 globally distributed GT5 or better events produced under the Global GT project  

(Bondár et al., 2007). The regional and teleseismic ISC station coverage varies from sparse to dense networks for 

these clusters. To locate events we used our ILS location algorithm (Bondár et al., 2006a) developed in Year 1 that 

uses the full data covariance matrix to take into account the correlated structure in the travel times. Calibrated  

travel-time corrections, i.e., SSSCs, were generated from the CUB2 (Shapiro and Ritzwoller, 2004) and Harvard  

(Antolik et al., 2003) global 3D models for Pn and P, respectively. Figure 8 shows the mislocations relative to the 

GT5 locations for four test cases. Figure 9 shows cumulatives of mislocation, 90% error ellipse area, and coverage 

for three test cases. And, Figure 10 compares results at two clusters for two test cases. Calibrated travel-times, i.e., 

SSSCs, provide the first-order effect in location improvements for events mislocated significantly more than their 

GT level (visually in Figure 8 and bottom panel Figure 9). Taking into account the residual correlated data structure 

improves coverage (top panel Figure 9) with incremental improvements in locations. The mb-based picking error 

model tightens some of the clusters with a large range of magnitudes (Figure 10).  

 

 
Figure 7. Variogram models for all GT clusters from the Global GT 

project (Bondár et al., 2007). The generic variogram model 

derived from all data is shown in red. 

Teleseismic P 

Regional Pn 
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Figure 8. Relocations of over 2,000 globally distributed GT5 or better events with a) IASPEI91, b) SSSCs, c) 

SSSCs and full data covariance matrix, and d) SSSCs and full data covariance matrix and mb-based delay 

corrections and variances (a subset of events from a, b and c with 4 ≤ mb ≤ 6). 

Figure 9 shows cumulative distributions for 

mislocation, error ellipse area and coverage for 

945 events with 4 ≤ mb ≤ 6 (the magnitude range 

where the mb-delay corrections and mb-

variances are currently defined). Recall that the 

mb-based error models (blue) of bias and 

variance were derived from an explosion data set. 

These mb-dependent measurement error 

estimates may be too optimistic for earthquakes, 

which may explain why the area of the error 

ellipses is underestimated and insufficient 

coverage. While the median mislocations remain 

more or less the same, the generic correlated 

error model (shown in green) provides systematic 

location improvements above the 60th percentile 

(or mislocations exceeding 10 km). More 

important, taking into account the correlated 

structure, using the transportable Pn and P 

correlated error models increases the coverage 

from about 60% to 80% without significant 

inflation of the error ellipses. A small increase in 

the variogram sill would assure 90% coverage. 

Figure 10 shows relocations for the Racha, 

Caucaus and the Kileaua, Hawaii GT5 clusters. 

Events are colored by their network magnitude 

and show internal clustering of large and small 

events. The new models appear to tighten the 

clusters by reducing the systematic location 

discrepancy between the small and large events. 

The net centroid bias is also reduced for both 

these clusters. 

 

 

 

 
Figure 9. Cumulative distributions of mislocation (bottom 

panel), error ellipse area (middle panel) and 

coverage (top panel) for events with 4 ≤ mb ≤ 6 

with IASPEI91 (red), SSSCs and mb-based delay 

corrections and variances (blue) and with 

correlated error structure (green). 

IASPEI91 SSSC SSSC+Corr SSSC+Corr+mb 
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Figure 10. Location errors (eastings and northings in km) relative to GT5 locations without (IASPEI91) and 

with calibrated travel-times, mb-delay corrections and correlated errors for a) Racha, Caucasus 

cluster and b) Kileaua, Hawaii cluster. Events are colored according to their mb (4 < mb < 6). 

Disparities between large (redish) and small (blueish) events are reduced. 

To test the SNR-based measurement error model, we used only those arrivals with reported SNR estimates. This 

basically restricted our globally distributed GT5 events to those that appear in the prototype IDC/IDC REB. As we 

mentioned earlier, the SNR-based delay and variance estimates are largely limited to teleseismic P, for which the 

delay correction is quite modest. There are indications that the SNR-based delay corrections make the clusters 

slightly tighter but the relocation tests are largely inconclusive and do not demonstrate significant improvements  

(or degradation). The transportable generic variogram models achieve the same coverage level (about 80%) for the 

sparse IMS network, indicating the same small sill adjustment to the variogram model is in order. 

CONCLUSIONS AND RECOMMENDATIONS 

We have developed generic transportable variogram models for Pn and P phases. By relocating a data set of globally 

distributed GT5 or better events, we demonstrated that the transportable variogram models used to construct 

network covariance matrices account for correlated structure in travel-time predictions and achieve 80% coverage 

for both sparse and dense networks. While we are still a bit shy of the nominal 90% coverage expected from the 

error ellipses scaled to the 90% confidence level, the models require only minor fine tuning to achieve actual 90% 

coverage. 

We have developed a DD-based methodology to derive SNR-dependent models of bias and variance for reading 

errors. Since SNR estimates are rarely reported, we prototyped measurement error models of phase pick delay and 

variance using network magnitude. Admittedly, mb is a rudimentary surrogate for SNR but it is reported for most 

events. While the phenomenon that arrivals picked increasingly late with decreasing event size is well established 

(especially for automatic picks), so far little effort has been made to account for the systematic lateness of picks in a 

standard location algorithm. We implemented the SNR/mb-dependent bias estimates as travel-time corrections in 

our location algorithm. Application of the delay correction assumes that calibrated travel times are used. The 

SNR/mb-dependent phase pick variances are added to the diagonals of the network covariance matrix. The 

validation tests have shown that the effect of phase pick delay corrections is second order relative to calibrated 

travel-times. The phase pick delay corrections typically move locations less than the accuracy of our GT test events. 

Nevertheless, the error model improves some event patterns by reducing the systematic location discrepancy 

between small and large events, thus making the event clusters tighter. 

As indicated in Table 1, our research now focuses on exploring alternative objective functions (lp-norms), regression 

algorithms, and hypothesis tests to account for input travel-time errors with un-modeled spatial correlation and  

non-Gaussian picking errors. For example, the results of a simple Monte Carlo experiment are shown in Figure 11. 

Random local networks (10 stations with epicentral distances < 150 km) were chosen and assigned random errors 

drawn from Gaussian, Weibull, and Gumbel distributions (all with zero mean and standard deviation 1 s). The 

resulting distribution of mislocations from the input non-Gaussian errors are well described by the Normal model 

below the 80th percentile. However at the higher percentiles, the Gumbel and Weibull input skewed tails are poorly 

modeled by the Gaussian distribution. We found that deviations from a Normal model could be predicted by a 

simple Location Quality metric defined as QL = (1-azgap/360)(1-sazgap/360) where azgap and sazgap are the 

primary and secondary azimuthal gaps of the network. Figure 12 shows median and 95th percentiles location errors 

as a function of QL and it is clear that when QL exceeds 1/2 the network deviates from Normal. Simulations such as 

b) a) 

IASPEI91 SSSC+Corr+mb 

Racha Kileaua 

SSSC+Corr+mb IASPEI91 
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these suggest the utility of stability tests based on network geometry for judging the validity of the Normal model 

for location uncertainty estimation. 

 

   

Figure 11. Gaussian, Weibull, and Gumbel input error distributions (each zero mean and 1 s standard 

deviation) were used in a Monte Carlo location experiment. Mislocations resulting from non-

Gaussian input errors are under predicted by the Normal model above the 80th percentile. 

 

Figure 12. Deviations from the Normal model are greatest for poor network configurations described by QL. 

Small QL is good, while networks with large QL are potentially unstable. 
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