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ABSTRACT 
 
In previous years of this project we have formulated an approach to analyzing seismic event location uncertainty that 
considers the effects of both observational errors in arrival-time data and prediction errors incurred in travel-time 
forward modeling. The analysis takes place in the setting of the multiple-event location problem, whereby arrival-
time data from a set of events are used to simultaneously solve for the locations of the events and travel-time 
corrections associated with the observed event-station paths. One of the events is taken as the target of the 
uncertainty analysis while the remaining events are treated as calibration events whose data constrain the path 
corrections within some level of uncertainty. Based on this joint inversion formulation, we developed a numerical 
scheme for computing a confidence region on the target event location that implicitly accounts for the calibration 
errors in the path-corrections, including the effects of uncertainty in the calibration event locations, nonlinearity of 
the travel-time forward problem, and non-Gaussian pick errors in observed arrival times. The confidence region is 
found by mapping a likelihood function, as defined for the multiple-event problem, on a hypocenter grid for the 
target event. The previous work focused on the basic multiple-event location problem, in which travel-time 
corrections comprise a simple time term for each observed station/phase combination.  
 
This paper describes our recent efforts to adapt our location uncertainty approach to the more general, and more 
difficult, problem in which travel-time corrections are linked to errors in the velocity model used for travel-time 
prediction. The resulting multiple-event location problem identifies travel-time calibration with 3D tomography. 
Replacing time-term corrections with tomographic corrections in our formulation is straightforward conceptually, 
but not computationally. The likelihood-mapping scheme is computationally intensive and, in the tomographic case, 
would require performing 3D travel-time tomography hundreds or thousands of times to obtain one confidence 
region. To address tomographic corrections in a practical manner, we must separate the location and calibration 
aspects of the problem, as in customary treatments of event location uncertainty, while seeking a computational 
scheme that retains the generality of our joint inversion formulation as much as possible. Therefore, we have 
designed a two-stage approach that relies on a Gaussian description of the errors in the travel-time corrections 
involved with the target event, as inferred from a tomographic analysis of the calibration data (the first stage). This 
defines a Gaussian prior distribution on travel-time prediction errors for the second stage, the location of the target 
event. The computation of the target event confidence region via likelihood mapping otherwise retains the full 
generality of our formulation, allowing for non-Gaussian pick errors and nonlinearity of the forward problem. This 
paper describes the theoretical basis for our location uncertainty approach, presenting the two-stage formulation as 
an approximation to the complete joint location/calibration formulation. It also describes numerical algorithms under 
development for implementing the two-stage approach. 
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OBJECTIVE 
 
This project is developing new mathematical and computational techniques for quantifying the errors in seismic 
event locations, including the effects of observational errors and errors in the forward model for travel-time 
prediction. Our approach associates the latter, or model errors, with the uncertainty in path travel-time corrections 
that have been inferred from a calibration analysis. The problems of event location and calibration (with arrival-time 
data from calibration events) are coupled through the travel-time corrections, and the objective of this project has 
been to analyze the two problems as a joint inversion problem. In so doing, one avoids making some of the 
simplifying, and ad hoc, assumptions that are often made when calibration results are exported to an event locator. 
In previous years we have applied the joint inversion framework to a simple situation (corrections as station time 
terms) to compute confidence regions on event locations that account for many complexities that are typically 
ignored or approximated: nonlinearity of the forward problem, non-Gaussian observational errors, and uncertainty in 
calibration-event locations.  
 
The current year of the project has focused on the problem of applying our joint location/calibration uncertainty 
framework to more realistic parameterizations of travel-time corrections, in particular, corrections based on a 3D 
velocity model. Calibration analysis then becomes the task of 3D travel-time tomography. It was clear from the start 
that the joint approach, which is computationally intensive even for the time-term problem, could not be practically 
applied to this situation without some sort of approximation. The project goal became to discover a way to separate 
the calculations along traditional lines, i.e. a calibration stage providing inputs to a follow-up location stage. A key 
part of this goal was to retain the completeness and generality of the joint approach as much as possible. This paper 
describes our location uncertainty framework in general and its approximate formulation as a two-stage process, 
including some specific algorithms under development for implementing this prioress.  
 
RESEARCH ACCOMPLISHED 
 
Single-Event Location 
 
First, we consider the single-event location problem in which the hypocenter x and origin time t of an event are to be 
determined from n arrival-time data, di, i = 1,…n, observed for various seismic phases at a network stations. We can 
write this inverse problem as  
 

di = Ti x( )+ t + ci + ei ,     (1) 
 
where Ti is a travel-time function for the ith station/phase, determined by a reference Earth velocity model; ci is an 
unknown correction to this function; and ei is an observational (pick) error. Since each correction ci is not known, it 
can be considered a travel-time prediction error, or model error.  
 
To solve this problem we have adopted a maximum-likelihood framework. The likelihood function is the product of 
two factors: one based on an assumed probability distribution for the pick errors, and one based on a prior 
distribution of the travel-time corrections. The latter is needed because we are treating the ci as explicit, unknown 
variables. We assume a generalized Gaussian distribution for pick errors (Billings et al., 1994). The negative 
logarithm of the likelihood function, ignoring constant terms, is then given by  
 

Λ tar x, t,c( )= Ψtar x, t,c( ),+Φ c c;x( ),    (2) 
 

where Φc is the prior (negative) log likelihood on c, which we have allowed to depend on the event hypocenter (but 
not its origin time), and where the data misfit function Ψtar is given by  
 

Ψtar x, t,c( )= 1
p

di −Ti x( )− t − ci
i =1

n

∑
p

/σ i
p .   (3) 

 
The σi are standard errors assigned to the data; this paper will assume these are known a priori.  
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The maximum-likelihood estimate of the event location parameters are those values ˆ x , ˆ t ( ) that, together with c = ˆ c , 
minimize Λtar: 
 

Λ tar
ˆ x , ˆ t , ˆ c ( )= min

x,t,c
Λ tar x, t,c( ).    (4) 

 
We note that in this equation, and others to follow, minimization with respect to a set of parameters is the equivalent 
of solving an inverse problem for those parameters.  
 
Location confidence regions 
 
Our approach to uncertainty analysis in single-event location derives a confidence region on a subset of the 
unknown problem parameters based on a “reduced” log-likelihood function that is minimized with respect to the 
remaining parameters. We will explain our uncertainty approach by considering confidence regions on the target 
event hypocenter, x, which considers the function 
 

Λ x x( )= min
t ,c

Λ tar x, t,c( ).     (5) 
 
A confidence region on the epicenter, for example, would involve an additional minimization over focal depth.  
 
Stated simply, a confidence region on x is a region in x-space that encompasses the smallest values of Λx, which of 
course includes the maximum-likelihood estimate ˆ x . The confidence region is defined by the inequality 
 

τ x( )≡ Λ x x( )− Λ x
ˆ x ( )≤ τ β      (6) 

 
where τ(x) defines a test statistic and τβ is a critical value of the test statistic selected for a given confidence level β 
(e.g. β = 0.95 for a 95% confidence region). Rodi (2006) discusses different ways of defining τβ, in either a 
Neyman-Pearson or Bayesian framework, and for computing τβ numerically. Amongst these choices, the preferred 
approach we have settled on is as follows. 
 
We base the definition of τβ on a Bayesian framework, which treats τ(x) as the exponent of a posterior distribution 
on x. Then τβ is the solution to 
 

τ x( ) ≤ τβ
∫ dx e−τ x( ) = β

all x∫ dx e−τ x( ).    (7) 

 
Rodi (2006) refers to this definition as “quasi-Bayesian” because the implied posterior distribution of x is not 
derived from a posterior joint distribution on all the parameters by integrating out t and c. The minimization over t 
and c in equation (5) is used instead.  
 
The numerical algorithm we have developed consists of two steps. The first step, likelihood mapping, computes τ  
on a grid in x -space. The second step, likelihood integration, estimates the integral on the right-hand side of 
equation (7) with numerical integration of the grid values of τ. From this integral, and a histogram of the grid-
sampled τ values, it is straightforward to calculate τβ as a function of β and then identify the grid points that belong 
to the confidence region for any given β. 
 
Figure 1 shows an example of our numerical confidence region algorithm applied to a Nevada Test Site (NTS) 
explosion at the Pahute Mesa testing area. The center panel shows the log-likelihood function mapped on an 
epicenter grid. The right panel shows the confidence regions, at three confidence levels, that result after performing 
the likelihood integration step to find τβ. This example did not account for model errors: the travel-time corrections, 
ci, were fixed to zero. Additionally, the event depth was fixed to its known value.  
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Figure 1. Likelihood function and confidence regions for a Pahute Mesa explosion, derived from 6 Pn 
arrivals, with the pick error distribution assumed to be Gaussian (p = 2). Left: The station geometry. 
Center: Log-likelihood function mapped on an epicenter grid. Right: Epicenter confidence regions 
determined from the likelihood function. Confidence regions are shown for 90, 95 and 98% 
confidence (blue, green and red, respectively). In the right two panels, the black circle marks the 
maximum-likelihood estimate for the event location, and the white circle is its GT0 location (from 
Walter et al., 2003). 

 
The computational efficiency of our numerical confidence region algorithm depends on how much CPU time it 
takes to evaluate Λx(x), involving the minimization in equation (5), for each grid point x. When model errors are 
allowed, this is controlled largely by the nature of the prior misfit function for corrections, Φc(c;x), appearing in 
equation (2). 
 
Prior Likelihood on Corrections and Calibration 
 
It is common in seismic event location algorithms to treat the travel-time corrections ci as independent Gaussian 
random variables (model errors) with known means and variances. Later in our development we will do the same 
(but including covariances). First, let us consider the formal relationship between Φc, the prior log-likelihood 
function on c, and the problem of seismic calibration.  
 
We assume that calibration is performed with seismic arrival-time data observed from m calibration events. 
Following our single-event formulation, we can write the calibration problem then as  
 

di, j = Ti x j( )+ t j + ci , j + eij ,      (8) 
 
where i indexes station/phase pairs and j indexes the events. Equation (8) holds for the subset of (i, j) paths for 
which data are available. The unknowns in this problem are the path travel-time corrections cij and, to the extent that 
the calibration events do not have GT0 locations, (xj, tj), j = 1, …, m.  
 
The set of station/phase combinations indexed by i may be the same as those for the single-event location problem 
of equation (1), but we do not require this to be true. Henceforth, the n station/phases under discussion may be 
considered a master set, with equations (1) and (8) holding for appropriate subsets for which observations are 
available.  
 
To link the target-event location problem, (1), and the calibration problem, (8), we need to link the path travel-time 
corrections ci and cij through some underlying parameterization. In previous years, the project has focused on the 
“basic” multiple-event location problem (e.g., Pavlis and Booker, 1983), which equates the corrections to a set of 
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time terms common to the events but different between station/phase combinations. Letting ai be the time term for 
the ith station/phase, we then have  
 
      ci = ai      (9) 
      cij = ai .      (10) 
 
In the current year, we have considered the more complex situation of tomographic travel-time corrections. Under 
the linear approximation to the velocity dependence of travel times, these corrections can be expressed as  
 
     ci , j = d ′ x ki∫ ′ x ; x j( )δu ′ x ( ),    (11) 
 
where ki ′ x ;x j( ) is a travel-time sensitivity kernel and δu ′ x ( ) is the slowness difference between the real Earth and 
the reference Earth model used for evaluating the travel-time function Ti. In this case, the slowness perturbation 
δu ′ x ( ) serves as the underlying parameterization of travel-time corrections and ci in the single-event problem is 
defined by integrating this perturbation with an appropriate sensitivity kernel for the target event, ki ′ x ,x( ).  
 
We can generalize these specific parameterizations and others as  
 

ci = a i x( )T q      (12) 

cij = a i x j( )T
q,     (13) 

 
where the vector q contains an underlying, discrete set of parameters for generating travel-time corrections. It will 
be convenient to write equation (12) alternatively as  
 

c = A x( )q,     (14) 
 
where the vectors ai(x) (transposed) occupy the rows of the sensitivity matrix A(x).  
 
Being consistent with our maximum-likelihood formation for single-event location, we define a (minus) log-
likelihood function for the calibration problem as  
 

  

Λ cal x1, t1 ,K,x m, tm ,q( )= Ψcal x1, t1,K,x m, tm,q( )
     + Φ gt x1 , t1 ,K,x m , tm( )+ Φ q q( ).

  (15) 

 
Ψcal is the misfit function for the calibration data:  
 

  

Ψcal x1, t1 .K,x m, tm ,q( )= 1
p

dij −Ti x j( )− t j − a i x j( )T
q

p

ij

∑ .  (16) 

 
Φgt and Φq express prior information on the calibration event locations and calibration parameters, respectively. We 
can now state a formal relationship between calibration and a prior likelihood function for model errors in the 
single-event location problem:  
 

  
Φ cal c;x( )= min

q:A x( )q =c
min

x 2 ,t1K,xm ,tm

Λ cal x1, t1 K,x m, tm,q( ).    (17)  

 
The two minimizations embody an inversion of the calibration data for the calibration parameters q in conjunction 
with a relocation of the non-GT0 calibration events. The minimization constrains q to match the given correction 
vector: A(x)q = c. Equation (17) defines an implicit transformation of the posterior distribution on the calibration 
parameters q, as implied by an inversion of calibration data, into a prior distribution on A(x)q.  
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Joint Location/Calibration Analysis 
 
A confidence region on the target event hypocenter x requires mapping the function Λx(x) in hypocenter space, 
which in turn requires the evaluation of Φc(c;x) for each grid point x (see equations (2) and (5)). If one could  
evaluate equation (17) in some closed form, it would be possible to separate the computations involved in 
calibration and target event location. In general, however, this is not possible without invoking some approximation.  
 
The main goal of this project was to investigate an approach that bypassed the computation of Φc by combining the 
location and calibration problems into a joint inverse problem. In the development here, this means substituting 
equation (17) into (2) so that (5) becomes (with some rearranging) 
 

  
Λ x x( )= min

q
min

t
Ψtar x, t,A x( )q( )+ min

x1,t1K,x m ,tm

Λ cal x1, t1 K,x m, tm ,q( ){ }.   (18) 

 
The computational burden resulting from doing this is apparent. To evaluate Λx(x) for each grid-point x requires 
performing a minimization over all the remaining parameters of the joint inverse problem, including calibration 
parameters (q) and calibration event locations (x1,t1,…,xm,tm). Therefore, a large inverse problem is solved 
repeatedly in order to calculate Λx on a grid.  
 
These calculations are feasible for the basic multiple-event location problem, and we have implemented a joint 
inversion uncertainty analysis for this problem as part of a location program (GMEL) developed under this and 
previous projects. Figure 2 shows confidence regions for the same Pahute Mesa event as in Figure 1, derived using 
32 other explosions at Pahute Mesa and Rainier Mesa as calibration events. Only one of the calibration events, a 
relatively well-recorded event at Rainier Mesa (16 Pn arrivals), was assigned a finite ground-truth level. The three 
panels show the resulting confidence regions, which now take model errors into account, under three assumptions 
about the GT level of that calibration event: GT0, GT2 or GT5 (at 90% confidence). We see that the confidence 
regions are larger than when model errors are assumed to be zero (Figure 1), and grow as the uncertainty in the GT 
calibration event location is increased. Figure 3 repeats the GT0 case with various non-Gaussian pick error 
distribution: p = 1.5, 1.25 and 1 (left, center, right, respectively).  
 
The confidence regions shown in Figures 2 and 3 took between 5 and 30 CPU minutes each to compute, the ones for 
smaller p taking the longest. In at least one case (right panel in Figure 3) the likelihood function was not mapped 
sufficiently well to compute accurate values of τβ, meaning even more computation was needed. To apply the joint 
inversion approach with tomographic corrections, thus, would be prohibitive since each point on a likelihood grid 
would require performing a full 3D tomography in conjunction with calibration event relocation.  
 
The remainder of this paper outlines a two-stage approach to event location uncertainty which, following 
conventional practice, isolates the bulk of the calculations in a calibration stage, whose results can be used 
efficiently for calculating confidence regions for target events as they arise. The two-stage approach depends on 
approximating the distribution of model errors, Φc, as Gaussian.  
 
Gaussian Approximation 
 
To simplify notation in this and the next section, we will not show the dependence of Φc on x. This dependence 
derives from the dependence of A, the sensitivity matrix for the target event, on x.  
 
Let c = c0 minimize Φc (c). Since the gradient of Φc is zero at c0, a quadratic approximation is given by  
 

 Φ c c( ) ≈ Φ c c0( )+ 1
2

c − c0( )T Vc
−1 c − c0( )     (19) 

 
where Vc is a symmetric matrix. This approximation is equivalent to assuming that c has a Gaussian prior 
probability distribution with moments  
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Figure 2. Confidence regions for the same Pahute Mesa event as in Figure 1, but accounting for uncertainty 
in travel-time corrections (model errors). The corrections were constrained by 32 calibration events 
(other NTS explosions) with one of them assigned a finite GT level: GT0 (left), GT2 (center), or GT5 
(right). The pick error distribution was assumed to be Gaussian (p = 2). 

 

 
Figure 3: Confidence regions for the same Pahute Mesa event, accounting for model errors as constrained by 

32 calibration events (see Figure 2). The GT calibration event is assumed to be GT0 and the pick 
error distribution is non-Gaussian: p = 1.5 (left), p = 1.25 (center), and p = 1 (right). 

 
 

E c[ ]= c0      (20) 
Var c[ ]= Vc .      (21) 

 
The quadratic approximation makes it possible to separate the calculations of the joint location/calibration problem 
into two stages. The next two sections show how the mean and variance of c can be derived from the calibration 
analysis (stage one) and used in locating the target event (stage two).  
 
Stage 1: Calibration 
 
The calibration problem involves minimizing Λcal in equation (15) with respect to both the correction parameter 
vector q and the calibration event locations (xj,tj). We assume here that an algorithm is available to solve this 
problem, e.g. GMEL for basic multiple-event location. 
 
Letting ˆ q  be the maximum-likelihood estimate of q obtained from solving the calibration problem, we can take the 
mean of c to be  
 

c0 = A ˆ q .     (22) 
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To obtain the variance of c we can use a perturbation method described by Rodi and Myers (2007) for computing 
covariance matrices (their "implicit" method). Applied to the task at hand, the method solves a sequence of 
perturbed calibration problems, one for each row of A, in which the calibration log-likelihood function is augmented 
with an additional term. For the ith row, the augmented function is  
 

  
′ Λ cal K,q( )= Λ cal K,q( )+ 1

2σ 2 c0 + ρn i − Aq( )T c0 + ρn i − Aq( ),  (23) 

 
where ni is the ith column of the identity matrix. The residual vectors yielded by the perturbed solutions 

c0 + ρn i − Aq( ) can be used to construct Vc. As presented by Rodi and Myers (2007), this is an exact method 
applicable when Λcal is a quadratic function of q. Here, Λcal might not be quadratic owing to trade-offs between q 
and the calibration event locations or, more blatantly, the assumption of non-Gaussian pick errors (p ≠ 2). For our 
purposes then, it is a method for fitting a quadratic function to Φc(c). The choice of the constants ρ and σ might then 
be crucial; ρ should anticipate the standard deviation of ci and σ should be somewhat smaller than ρ.  
 
The quantities c0 and Vc will depend on the target event hypocenter, x, exactly when A does. If this dependence 
cannot be neglected, then our two-stage approach would require that that c0 and Vc be calculated on an appropriate 
grid in x-space suitable for interpolation to an arbitrary x.  
 
Stage 2: Location of a Target Event 
 
We now restore the dependence of c0 and Vc on x.  
 
Using the Gaussian (quadratic) approximation to Φc, the maximum-likelihood estimates of the target event location 
and travel-time correction vector, ˆ x , ˆ t , ˆ c ( ), will minimize  
 

Λ tar x, t,c( )= Ψtar x, t,c( )+ 1
2

c − c0 x( )( )T
Vc

−1 x( ) c − c0 x( )( ),  (24) 

 
where Ψtar is given by equation (3).  
 
First, we point out that when the data errors are Gaussian (p = 2) one can minimize Λtar analytically with respect to c 
for fixed x and t. Substituting the solution for c into equation (24) yields a quadratic data misfit function with the 
data di, corrected by (c0)i and with the diagonal covariance matrix for pick errors, diag

 
σ 1

2,K,σ n
2{ }, augmented by 

the full matrix Vc. Some location programs (e.g., LocOO, Ballard, 2002) can accommodate such misfit functions. 
However, this analytic elimination of c cannot be done for non-Gaussian pick errors.  
 
The event location scheme we are developing treats c as an explicit unknown, and performs minimization in a 
hierarchy. We are currently implementing the scheme in GMEL under the assumption that A does not depend on x 
(such as in basic multiple-event location). We describe the algorithm for this situation first.  
 
The inner loop of the algorithm minimizes Ψtar (the data misfit) with respect to (x,t), using grid search, with c fixed 
to some current value. Denote the grid-search solution as (x*(c), t*(c)). We can then define an objective function for 
c as  
 

    Λ c c( )= Ψtar x* c( ), t * c( ),c( )+ 1
2

c − c0( )T Vc
−1 c − c0( ).   (25) 

 
The outer loop of the location algorithm minimizes Λc(c) using a nonlinear conjugate gradients (NLCG) technique. 
Each step of the NLCG loop updates c and performs a grid search to update x* c( ) and t* c( ).  When the NLCG 
iteration converges, we have x* c( )= ˆ x  and t* c( )= ˆ t .  
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When c0 and Vc do depend on x, such as for tomographic corrections, the scheme could be modified to perform the 
grid-search on the complete function Λtar in (24) rather than just its first term. However, this might incur a high 
computational cost. If the dependence of c0 and Vc on x is not too strong, it might suffice to update c0 and Vc only 
once per NLCG iteration. Rodi and Myers (2007) show evidence that Vc, for tomographic corrections, does depend 
strongly on x, however. 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
This project has developed a rigorous theoretical framework for uncertainty analysis in seismic event location, 
linking travel-time prediction errors (model errors) to uncertainty in travel-time calibration. This link, and the fact 
that calibration events themselves have location errors, recognizes event location and seismic calibration as coupled 
inverse problems of similar structure. Our framework thus formulates the task of characterizing the location 
uncertainty in an event of interest as the focus of an uncertainty analysis in the larger joint location/calibration 
inverse problem.  
 
In previous years we implemented this framework for a relatively simple calibration scenario (basic multiple-event 
location with time-term corrections) to demonstrate the validity and generality of the approach. A pessimistic, but 
tentative, conclusion of Rodi (2006) was that a joint location/calibration approach might not be computationally 
feasible for more complex scenarios as when calibration is done by 3D travel-time tomography. Aside from 
computational issues, we add the logistical reality that event location and, certainly, seismic calibration are not fully 
automated processes that can be embedded in a computer algorithm of the type we developed. These tasks are 
performed by different groups of people, often with different sources of data, and on different time frames.  
 
Our recent work has attempted to reformulate our uncertainty method as a two-stage process, calibration followed 
by the location of new events, in a way that preserves the rigor and generality of the joint inversion approach. This 
task requires that calibration uncertainty be captured and exported to an event locator. We developed one such 
formulation that makes the new assumption that calibration uncertainty can be characterized by a Gaussian 
distribution on model errors, allowing for covariances between the errors. The formulation retains the 
accommodation of forward problem nonlinearity, non-Gaussian errors in arrival-time observations, and uncertainty 
in calibration event locations. Further, we have designed new algorithms to implement our two-stage formulation 
that place the bulk of the computations in the calibration stage and, in principle, are applicable to a wide variety of 
calibration scenarios including 3D tomographic calibration. We are in the process of implementing the new 
algorithms for basic multiple-event location in order to corroborate the computational advantages and test the 
Gaussian approximation for model errors in this problem.  
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