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ABSTRACT 
 
The finite difference (FD) method yields the solution to a discretized version of the full acoustic wave equation for 
arbitrarily complex media. It is a full spectrum approach and is thus reliable at all angles of propagation, including 
backscatter. This offers an advantage over other standard propagation methods in wide use, as it allows for accurate 
computation of acoustic energy levels in the case where significant scattering can occur near the source, such as may 
happen for an explosion near the surface, or underground. This fits in with nuclear monitoring goals, in that it allows 
for an improved understanding of the generation and propagation of infrasound energy from arbitrary sources, 
including underground and near-surface explosions. 
 
Two types of FD methods of solving the acoustic wave equation are presented in this paper. The first is a finite 
difference frequency domain (FDFD) method, applied in cylindrical coordinates to simulate the effects of a point 
source in an azimuthally symmetric medium. The second is a finite difference time domain (FDTD) approach 
including the effects of both gravity and wind, applied in two-dimensional Cartesian coordinates. In this paper 
equations are developed for the FDTD approach where both wind and gravity effects are considered. 
 
It is shown that the FD approach can be used to solve for sound intensities in arbitrarily complex models that may 
include high material contrasts and arbitrary topography. In this paper, results of FDTD and FDFD approaches are 
compared for the case of a shallow underground source, for a boundary with significant topography. The effects of 
wind and gravity on the solution are examined. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

29th Monitoring Research Review:  Ground-Based Nuclear Explosion Monitoring Technologies

836



  

OBJECTIVES 
 
An FDTD method of numerically synthesizing infrasound energy in a realistic environment is sought. The FDTD 
method yields the solution to a discretized version of the full acoustic wave equation for arbitrarily complex media. 
It is a full spectrum approach and is thus reliable at all angles of propagation, including backscatter. This offers an 
advantage over other standard propagation methods in wide use, as it allows for accurate computation in cases 
where significant scattering can occur near the source, such as may happen for an explosion near the surface or 
underground. The effects of wind or gravity on infrasound propagation may also be incorporated into the infrasound 
propagation problem with relative ease using finite difference techniques. This fits in with nuclear monitoring goals, 
in that successful completion of this project will allow for an improved understanding of the generation and 
propagation of infrasound energy in arbitrarily complex environments. 
 
In this paper, both an FDFD approach and an FDTD approach are used to solve for the infrasound signals generated 
by an underground source. A method of incorporating wind and gravity are outlined for the FDFD approach. 
 
RESEARCH ACCOMPLISHED 
 
An FDTD method of numerically acousto-gravity waves in a windy environment has been developed. The equations 
governing infrasound propagation are derived below for the time domain; their incorporation into an FDTD method 
are explained in the next subsection. Examples are given in the final sub-section and compared to the frequency 
domain method. 
 
Low frequency wave equations for a fluid in motion 
 
In the absence of viscosity, the equations governing propagation of sound in the atmosphere are the conservation of 
momentum,  

 
The derivative on the left represents the change with time in a reference frame moving with the fluid. The first term 
on the right side of Equation (5) represents the change at a point fixed in space. The second term represents the 
change as the observer moves with the fluid at the velocity V, and is called the advective term. Generally, quantities 
are expressed in terms of a fixed point in space in order to compare computational results with observations made at 
stationary sensors. 
 
The propagation of sound waves in the atmosphere introduce fluctuations in the pressure, density, and velocity 
fields. The standard procedure in solving Equations ~(1)–(3) is to consider a solution of the form 
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   P = po + ps;  ρ= ρ o + ρ s;  V = w + v;  C2 =c2 +(c2)';       (6) 

where po, ρ o, and w are the ambient solutions in the absence of fluctuations ps, ρ s, and v due to the propagating 
sound wave. The adiabatic sound speed is given by c, and (c2)' is the perturbation in the squared sound speed caused 
by the passage of the sound wave (Ostashev et.al., 2005). In what follows, w denotes wind velocity profile, and  
v denotes the acoustic particle velocity associated with the sound wave. Waveforms are derived by computing the 
pressure perturbations, ps, as a function of time.  
 
To obtain first order linear equations feasible for implementation in an FDTD method, it is assumed that the ambient 
field is in equilibrium, and that the sound wave pressure is very small in comparison with the ambient pressure. The 
former assumption implies that Eqs. (1-3) are satisfied in the absence of a propagating sound wave so that zeroth 
order terms cancel when Eqs. (6) are substituted into Equations (1)-(3). The latter assumption means that second and 
higher order terms cancel. Retaining only linear terms, Equation (1) becomes  
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For a stable medium, N is a positive real number equal to the frequency of a parcel in vertical motion. Equation  
13 indicates that, for a reference frame moving with the wind, the Brunt-Vaisala frequency is unaltered. However, 
measurements are made in a stationary reference frame, indicating that the winds control the measured velocity of 
the gravity waves. The buoyancy frequency depends on the vertical gradient of the ambient density. From the 
hydrostatic equation po(z)= - ρ og and the ideal gas law δpo/δz = ρ oR T, where R is a gas constant and T is the 
temperature in degrees Kelvin, the ambient density is derived as ρ o(z) = ρ o(0) exp(-g z/RT)/RT. The vertical 
derivative of the density may be derived from this relation. 

 
Equations 8, 10, and 11 form a complete set of first order linear equations for the pressure, acoustic particle velocity 
and density fluctuations associated with a propagating infrasound wave in a windy medium, valid under the 
assumptions stated previously. To summarize, these equations are valid under the assumptions that the ambient 
pressure, density, and wind fields do not vary with time, the winds are horizontal, and vary only with altitude. That 
is, the wind must be range-invariant. 
 
Finite difference modeling of infrasound in a windy environment 
 
Here, an FDTD method is outlined for infrasound propagation in a windy, stratified medium. That is, it is assumed 
that the wind blows horizontally and is invariant along range. The densities, and sound velocities vary much more 
gradually in the horizontal direction than vertically. The method is applied to a 2-D model, that is, the source is 
assumed to be an infinite line source. The method resembles an FDTD method for sound waves in a windy 
atmosphere described in detail by Ostashev et.al. (2005), but with the addition of gravity. 
 
For a 2-D model in the x-z plane with horizontal wind speed wx, Eqs. (8) becomes 

 
The static sound speed c and ambient density ρ o may vary with both altitude and range; the wind speed wx varies 
only with altitude. Equations. 14–16 are in a form suitable to computation by FDTD techniques. Note that for  
wx = 0, that is, zero wind velocity, and g=0, these equations reduce to the usual equations for acoustic propagation in 
a static medium (e.g., Botteldoren, 1994).  
 
The finite difference (FD) method relies on replacing linear partial differential equations by a set of discrete 
equivalents. Field solutions are then computed over a discrete set of nodes that comprise the spatial grid.  
Figure 1 indicates how field variables are defined and how the medium is discretized for the staggered grid method, 
initially developed by Yee (1966). The model is decomposed into a set of discrete cells of dimension Δ x x Δ z. The 
sound speed c and ambient density ρ o are uniform over a given cell, but may vary from cell to cell. Pressure and 
gravity nodes are defined at the center of each cell and the velocity variables are located midway between the 
pressure nodes. The staggered grid formulation increases the accuracy of the FD solution, since central differences 
are used to compute the discrete derivatives (Taflove and Hagness, 2000). The locations of the vertical velocity 
nodes are defined in such a way as to allow a rigid surface (vz=0) to be defined at the bottom of the model.  
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Figure 1. The finite difference model is  decomposed into a set of discrete cells, indicated by the solid lines, 
each with  uniform velocity c and ambient density ρ o. The acoustic pressure and density 
perturbations are defined by the nodes at the center of each cell, indicated by the filled circles. The 
locations of the horizontal velocity vr  (triangles pointing right) and vertical velocity variables vz 
(triangles pointing up) are defined on a spatially staggered grid, as shown. 

 
Typically, in a nonmoving medium, the acoustic velocities and pressures are computed in a leap-frog manner  
(Yee, 1966), thus the velocities and pressures are computed at alternating time-steps, and the fields from the 
previous time step are overwritten. Without the wind terms, the governing equations (Equations 14–16) indicate that 
time derivatives in the acoustic particle velocities depend on the spatial derivatives of the pressure variables, and 
vice versa. However, with the inclusion of advection terms, first order derivatives in space and time must be 
computed simultaneously. Various numerical implementations have been suggested for the computation of the 
FDTD equations for sound propagation in windy environments (Blumrich and Heinmann, 2002; Van Renterghem 
and Botteldoren, 2003; Ostashev et.al., 2005). Here, the method of Ostashev et.al. (2005) is followed. That is, 
pressure and velocity fields are over saved over two time steps so that time derivatives may be computed using 
central differences. Refer to Ostashev et.al., (2005) for further detail. 

 
A method of applying FD methods in the frequency domain, in cylindrical coordinates, for a point source in an 
azimuthally symmetric model was developed by de Groot-Hedlin (2006).  

 
Comparison of FDFD and FDTD solutions in a model with topography 
 
In this subsection, comparisons are made between FDFD and FDTD results for a shallow underground source in a 
medium with topography. The source is embedded within a medium with a sound speed 2 km/s and a density of 
2000 k/m3. The sound speed within the air is shown in Figure 2. 
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Figure 2. Sound velocity profile within the air. This sound velocity profile is taken from a G2S model for the 

Mt. St. Helens region for March 9, 2005. The density decreases with altitude by slightly over an 
order of magnitude over this altitude scale.  

 
The sound velocity profile shows a decrease in sound speed with altitude for the first 10 km; this corresponds to a 
typical sound velocity profile in which the temperature decreases with altitude. The effect is to cause some 
deflection of sound upwards, away from the surface.  

 
The finite difference time domain method is applied in Cartesian coordinates, thus the model is invariant along a 
direction perpendicular to the x-z plane. The source is thus a line source.  

 
This model features a broad, symmetric peak, with a highest altitude of 2 km. The source was located directly 
beneath the peak at an altitude of 1.2 km, i.e., a distance of 0.9 km below the ground surface. The center frequency 
of the source was 0.5 Hz. “Receivers” were located at intervals of 5 km from each side of the peak at distances from 
5 km to 30 km from the center of the model.  

 
Several “snapshots” of the acoustic pressure are shown in Figure 3. As indicated, the pressure propagates quickly 
through the ground then couples to the air. A later arrival corresponds to acoustic energy that couples to the air near 
the source and propagates outward from there. Thus there should be two main arrivals at each receiver, a first one 
corresponding to acoustic energy propagating through the earth, coupling to the air near the receiver, and a second 
corresponding to coupling to the air near the source. The traces corresponding to this model are shown in Figure 4. 
For this model, ray-based propagation methods which rely on a high frequency approximation indicate that acoustic 
energy is refracted upward, away from the ground so that the more distant receivers lie in a shadow zone. These 
results thus indicate the extent to which synthesis of the whole waveform is required. 
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Figure 3. “Snapshots” of the acoustic pressure emanating from a 0.5 Hz source at 0.9km below the central 

peak at the time points 5 s, 10 s, and 15 s. An identical color scale is shown for each plot. 
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Figure 4. Waveforms at distances of 5 km to 30 km from the peak.  

 

 
Figure 5. Transmission loss results derived from finite difference frequency domain modeling of (top) a  

0.5Hz source at 0.6km, i.e., 1.5km below the surface and (bottom) for the same source at 1.2km. The 
second source is equivalent to the one shown for the FDTD simulation. Note the difference in 
colorscales for the two source depths. 
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For the finite difference time domain results, there was no discernable difference in the results with or without 
gravity, as gravitational results become significant at much lower frequencies. Incorporation of a realistic wind 
profile showed only minor asymmetry in the waveform results on either side of the peak. Wind and gravity have not 
yet been incorporated into finite difference frequency domain modeling. 

 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
Equations have been developed to incorporate the effects of both wind and gravity into an FDTD modeling method. 
FDFD methods of incorporating these effects are less robust as they require the inversion of large matrices. 
 
It has been demonstrated that a full waveform modeling technique is required to model infrasound generated by an 
underground source. Further verification of the FD method is needed for sources within a fraction of a wavelength 
from a boundary with a strong impedance contrast. 
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