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ABSTRACT

Thefinite difference (FD) method yields the solution to a discretized version of the full acoustic wave equation for
arbitrarily complex media. It isafull spectrum approach and isthus reliable at all angles of propagation, including
backscatter. This offers an advantage over other standard propagation methods in wide use, asit allows for accurate
computation of acoustic energy levelsin the case where significant scattering can occur near the source, such as may
happen for an explosion near the surface, or underground. Thisfitsin with nuclear monitoring goals, in that it allows
for an improved understanding of the generation and propagation of infrasound energy from arbitrary sources,
including underground and near-surface explosions.

Two types of FD methods of solving the acoustic wave equation are presented in this paper. Thefirst isafinite
difference frequency domain (FDFD) method, applied in cylindrical coordinates to simulate the effects of a point
source in an azimuthally symmetric medium. The second is afinite difference time domain (FDTD) approach
including the effects of both gravity and wind, applied in two-dimensional Cartesian coordinates. In this paper
equations are developed for the FDTD approach where both wind and gravity effects are considered.

It is shown that the FD approach can be used to solve for sound intensitiesin arbitrarily complex models that may
include high material contrasts and arbitrary topography. In this paper, results of FDTD and FDFD approaches are
compared for the case of a shallow underground source, for a boundary with significant topography. The effects of
wind and gravity on the solution are examined.
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OBJECTIVES

An FDTD method of numerically synthesizing infrasound energy in arealistic environment is sought. The FDTD
method yields the solution to a discretized version of the full acoustic wave equation for arbitrarily complex media.
Itisafull spectrum approach and isthus reliable at all angles of propagation, including backscatter. This offers an
advantage over other standard propagation methods in wide use, asit allows for accurate computation in cases
where significant scattering can occur near the source, such as may happen for an explosion near the surface or
underground. The effects of wind or gravity on infrasound propagation may also be incorporated into the infrasound
propagation problem with relative ease using finite difference techniques. This fits in with nuclear monitoring goals,
in that successful completion of this project will allow for an improved understanding of the generation and
propagation of infrasound energy in arbitrarily complex environments.

In this paper, both an FDFD approach and an FDTD approach are used to solve for the infrasound signals generated
by an underground source. A method of incorporating wind and gravity are outlined for the FDFD approach.

RESEARCH ACCOMPLISHED

An FDTD method of numerically acousto-gravity waves in awindy environment has been developed. The equations
governing infrasound propagation are derived below for the time domain; their incorporation into an FDTD method
are explained in the next subsection. Examples are given in the final sub-section and compared to the frequency
domain method.

Low frequency wave equations for a fluid in motion

In the absence of viscosity, the equations governing propagation of sound in the atmosphere are the conservation of
momentum,

DV

o VP +F, (1)
conservation of mass
% FpV -V =10, (2)
and the equation of state
DP o D,{): (3)
Dt Dt )

(Gill, 1982; Ostashev et al., 2005). These equations relate the velocity V, the pressure P, and the density
p. The external forces acting upon the medinm are denoted by F, and ' is related to the adiabatic sound
speed. At low frequencies, the gravitational force F pg must be included, where

g =1[0,0,9.8] m/s* (4)

indicates gravitational acceleration; the negative sign on the force indicates that a downward force acts upon
a positive density fluctuation caused by the propagating sound wave.

D

The convective derivative (also known as the Lagrangian derivative) f; is defined by
D 7. )
— ==+ (V-V) (5)
Dt ot \

The derivative on the | eft represents the change with time in a reference frame moving with the fluid. The first term
on the right side of Equation (5) represents the change at a point fixed in space. The second term represents the
change as the observer moves with the fluid at the velocity V, and is called the advective term. Generally, quantities
are expressed in terms of afixed point in space in order to compare computational results with observations made at
stationary sensors.

The propagation of sound waves in the atmosphere introduce fluctuations in the pressure, density, and velocity
fields. The standard procedure in solving Equations ~(1)—(3) isto consider a solution of the form
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P=po+ps p=potps V=w+v, C'=c+(c?); (6)

where p,, p o, @nd w are the ambient solutions in the absence of fluctuations ps, p s, and v due to the propagating
sound wave. The adiabatic sound speed is given by ¢, and (c?)" is the perturbation in the squared sound speed caused
by the passage of the sound wave (Ostashev et.al., 2005). In what follows, w denotes wind velocity profile, and

v denotes the acoustic particle vel ocity associated with the sound wave. Waveforms are derived by computing the
pressure perturbations, ps, as afunction of time.

To obtain first order linear equations feasible for implementation in an FDTD method, it is assumed that the ambient
field isin equilibrium, and that the sound wave pressure is very small in comparison with the ambient pressure. The
former assumption impliesthat Egs. (1-3) are satisfied in the absence of a propagating sound wave so that zeroth
order terms cancel when Egs. (6) are substituted into Equations (1)-(3). The latter assumption means that second and
higher order terms cancel. Retaining only linear terms, Equation (1) becomes

ov ow .
'D”(ﬁ Fv- Vw4 W-Vv) f p_k_(a f W-VW) = —Vps — psg, (7)

where the external gravitational force has been included.

Under the assumption that winds are steady, i.e., dw/0t = 0, and there is no variation along the
direction of the wind, i.e., w- Vw = 0, the equation governing acoustic particle velocity reduces to

%) ,
po((_._v Fv-Vw+ W-VV) = —Vps — p.g. (8)
ot

Combining Eqs. (2) and (3), and inserting Eqs. (6) yields the following equation for the pressure
fluctuations due to the propagating sound wave:

Ips . . . )
;T FW-Vpe +v-Vpy = —pc?V - v (pn{\c’)z ! p_g(:.z)v CW (9)
at
The hydrostatic equation Vp, = —p,g holds under the assumption of steady state and range-invariant winds.

Furthermore, Ostashev et al.(2005) states that the divergence term V - w may be ignored to order (w/c)?;
under this assumption Eq. (9) becomes

Ips

5 W VP = poveg - e’V v (10)

where the gravity vector is as defined in Eq. (4).

The equation for fluctuations in density may be derived from Eq. (3}, the equation of state, as

Aps 1 /0p,
i V'VPU } W-VP.-;_ _( ot

ot 2 Fv-Vp, +w- Vp_k_)._ (11)

under the assumptions that the ambient pressure and density values do not vary with time, and that (¢')?w-
Vpo = 0, which is satisfied by horizontal winds, and densities that vary weakly with range. This equation
for density variations is similar in form to Eq. 6.14.3 of Gill (1982), with the exception that horizontal winds
w are included in Eq. 11. Making use of the hydrostatic equation Vp, = —pg, the above equation may be

re-written as
dp,

dt
where g = 9.8m/s? is the vertical component of gravity, v, is the vertical particle velocity, d/dt represents
the time derivative in a reference frame moving with the wind, and the Brunt-Vaisala frequency N - also
called the buoyancy frequency - is defined as

dps
dt

""z.f:'uﬂ'r2 /g = "5_2( )-. {:12}

N? = —g(pg dpo/dz + g/c?). (13)
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For a stable medium, N is a positive real number equal to the frequency of a parcel in vertical motion. Equation
13 indicates that, for areference frame moving with the wind, the Brunt-V aisala frequency is unaltered. However,
measurements are made in a stationary reference frame, indicating that the winds control the measured velocity of
the gravity waves. The buoyancy frequency depends on the vertical gradient of the ambient density. From the
hydrostatic equation py(z)= - p ,g and the ideal gaslaw dp,/6z = p R T, where R is agas constant and T is the
temperature in degrees Kelvin, the ambient density is derived as p 4(2) = p o(0) exp(-g Z/RT)/RT. The vertical
derivative of the density may be derived from this relation.

Equations 8, 10, and 11 form a complete set of first order linear equations for the pressure, acoustic particle velocity
and density fluctuations associated with a propagating infrasound wave in awindy medium, valid under the
assumptions stated previously. To summarize, these equations are valid under the assumptions that the ambient
pressure, density, and wind fields do not vary with time, the winds are horizontal, and vary only with altitude. That
is, the wind must be range-invariant.

Finite difference modeling of infrasound in a windy environment

Here, an FDTD method is outlined for infrasound propagation in awindy, stratified medium. That is, it is assumed
that the wind blows horizontally and isinvariant along range. The densities, and sound velocities vary much more
gradually in the horizontal direction than vertically. The method is applied to a2-D model, that is, the sourceis
assumed to be an infinite line source. The method resembles an FDTD method for sound waves in awindy
atmosphere described in detail by Ostashev et.al. (2005), but with the addition of gravity.

For a2-D model in the x-z plane with horizontal wind speed wy, Egs. (8) becomes

v, . v, My, _1 ?)p_*) (14a)
TR i ml T (e
du., du., L £ ODs
—_— Wy —— - - s0 . (141
ot We'gg ~ Po (f): F P ”) (14b)
Eq. (10) becomes
dp. Ips 5 Ov, O, )
‘i" ¥ o 'z o0 H ¥ - . ‘: |J-'I'
ot e o b Povzg = Poc dx l dz I (15)
and Eq. (11) becomes
dp. dp, pg 1 (f)p_k. ) I f)p_k.) (16)
ol [ hr Sl T4, Vs Pol Wy —— |, L0
ot 9z "or a\ar P oz ‘

The static sound speed ¢ and ambient density p , may vary with both atitude and range; the wind speed w, varies
only with dtitude. Equations. 14-16 are in aform suitable to computation by FDTD techniques. Note that for

wy =0, that is, zero wind velocity, and g=0, these equations reduce to the usual equations for acoustic propagation in
a static medium (e.g., Botteldoren, 1994).

Thefinite difference (FD) method relies on replacing linear partial differential equations by a set of discrete
equivalents. Field solutions are then computed over a discrete set of nodes that comprise the spatial grid.

Figure 1 indicates how field variables are defined and how the medium is discretized for the staggered grid method,
initially developed by Y ee (1966). The model is decomposed into a set of discrete cells of dimension A X X A z. The
sound speed ¢ and ambient density p , are uniform over a given cell, but may vary from cell to cell. Pressure and
gravity nodes are defined at the center of each cell and the velocity variables are located midway between the
pressure nodes. The staggered grid formulation increases the accuracy of the FD solution, since central differences
are used to compute the discrete derivatives (Taflove and Hagness, 2000). The locations of the vertical velocity
nodes are defined in such away asto allow arigid surface (v,=0) to be defined at the bottom of the model.
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Figure 1. Thefinite difference model is decomposed into a set of discrete cells, indicated by the solid lines,
each with uniform velocity ¢ and ambient density p .. The acoustic pressure and density
perturbations ar e defined by the nodes at the center of each cell, indicated by thefilled circles. The
locations of the horizontal velocity v, (triangles pointing right) and vertical velocity variablesv,
(triangles pointing up) are defined on a spatially staggered grid, as shown.

Typically, in anonmoving medium, the acoustic velocities and pressures are computed in aleap-frog manner

(Yee, 1966), thus the velocities and pressures are computed at alternating time-steps, and the fields from the
previous time step are overwritten. Without the wind terms, the governing equations (Equations 14-16) indicate that
time derivatives in the acoustic particle velocities depend on the spatial derivatives of the pressure variables, and
vice versa. However, with the inclusion of advection terms, first order derivativesin space and time must be
computed simultaneously. Various numerical implementations have been suggested for the computation of the
FDTD equations for sound propagation in windy environments (Blumrich and Heinmann, 2002; Van Renterghem
and Botteldoren, 2003; Ostashev et.al., 2005). Here, the method of Ostashev et.al. (2005) isfollowed. That is,
pressure and velocity fields are over saved over two time steps so that time derivatives may be computed using
central differences. Refer to Ostashev et.al., (2005) for further detail.

A method of applying FD methods in the frequency domain, in cylindrical coordinates, for a point sourcein an
azimuthally symmetric model was developed by de Groot-Hedlin (2006).

Comparison of FDFD and FDTD solutionsin a model with topography
In this subsection, comparisons are made between FDFD and FDTD results for a shallow underground sourcein a

medium with topography. The source is embedded within a medium with a sound speed 2 knm/s and a density of
2000 k/m3. The sound speed within the air is shown in Figure 2.
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Figure 2. Sound velocity profile within theair. This sound velocity profileistaken from a G2S model for the
Mt. St. Helensregion for March 9, 2005. The density decreases with altitude by slightly over an
order of magnitude over thisaltitude scale.

The sound velocity profile shows a decrease in sound speed with altitude for the first 10 km; this correspondsto a
typical sound velocity profile in which the temperature decreases with atitude. The effect isto cause some
deflection of sound upwards, away from the surface.

Thefinite difference time domain method is applied in Cartesian coordinates, thus the model isinvariant along a
direction perpendicular to the x-z plane. The source is thus aline source.

Thismodel features a broad, symmetric peak, with a highest atitude of 2 km. The source was located directly
beneath the peak at an altitude of 1.2 km, i.e., adistance of 0.9 km below the ground surface. The center frequency
of the source was 0.5 Hz. “Receivers’ were located at intervals of 5 km from each side of the peak at distances from
5 km to 30 km from the center of the model.

Severa “snapshots’ of the acoustic pressure are shown in Figure 3. Asindicated, the pressure propagates quickly
through the ground then couples to the air. A later arrival corresponds to acoustic energy that couplesto the air near
the source and propagates outward from there. Thus there should be two main arrivals at each receiver, afirst one
corresponding to acoustic energy propagating through the earth, coupling to the air near the receiver, and a second
corresponding to coupling to the air near the source. The traces corresponding to this model are shown in Figure 4.
For this model, ray-based propagation methods which rely on a high frequency approximation indicate that acoustic
energy isrefracted upward, away from the ground so that the more distant receiversliein a shadow zone. These
results thus indicate the extent to which synthesis of the whole waveform is required.
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Figure 3.
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“Snapshots’ of the acoustic pressure emanating from a 0.5 Hz sour ce at 0.9km below the central
peak at thetimepoints5s, 10 s, and 15 s. An identical color scaleis shown for each plot.
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Figure 4. Waveforms at distances of 5 km to 30 km from the peak.
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Figureb5. Transmission lossresultsderived from finite differ ence frequency domain modeling of (top) a
0.5Hz source at 0.6km, i.e., 1.5km below the surface and (bottom) for the same source at 1.2km. The
second sour ceis equivalent to the one shown for the FDTD simulation. Note the differencein
colorscalesfor the two source depths.
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For thefinite difference time domain results, there was no discernable difference in the results with or without
gravity, as gravitational results become significant at much lower frequencies. Incorporation of arealistic wind
profile showed only minor asymmetry in the waveform results on either side of the peak. Wind and gravity have not
yet been incorporated into finite difference frequency domain modeling.

CONCLUSIONSAND RECOMMENDATIONS

Equations have been developed to incorporate the effects of both wind and gravity into an FDTD modeling method.
FDFD methods of incorporating these effects are less robust as they require the inversion of large matrices.

It has been demonstrated that a full waveform modeling techniqueis required to model infrasound generated by an
underground source. Further verification of the FD method is needed for sources within afraction of awavelength
from a boundary with a strong impedance contrast.
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