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ABSTRACT 
 
With the contribution of data from high-quality seismic stations throughout the globe, the event detection threshold 
is reduced to smaller magnitudes. At magnitude 4 and below, delay-fired explosions are often commonly observed 
along with natural seismicity. The addition of this class within an event catalog leads to several questions which 
must be addressed: (1) can delay-fired mining explosions be discriminated from earthquakes; (2) can the 
understanding of mining discriminants illuminate the explosion discrimination process in regions where there are no 
known nuclear explosions; and (3) are mining discriminants regionally dependent, and are there corrections to 
account for this dependence? A broader question is in understanding the ability to separate source and propagation 
path effects from regional data. Addressing this question utilizing regional datasets has direct application to the 
problems noted above but more generally to our ability to interpret regional seismic records from all types of events 
including earthquakes. To address these types of questions, we have assembled a database focused on two regions, 
the Western United States (WUS) and the Altai-Sayan (AS) region of Russia, which are both areas of prolific mining 
activity. As part of an extensive collaboration with the largest coal mine in the WUS, we have detailed shot 
information for ~1000 mining events, classified into six distinct blast types; we have limited information for events 
in the AS.  

We have applied three discriminants to data from 11 stations and one array in the WUS. The first discriminant  
(amplitude ratios) yields station centric results, although the largest mining events separate from earthquakes that are 
<250 km from the mine; as the earthquake dataset expands spatially, discrimination performance degrades. 1D path 
corrections provide improvement, but additional calibrations are necessary to optimize this discriminant. The second 
discriminant (time-frequency) separates the larger types of blasts with the longest source duration at all stations. 
Smaller blasts do not discriminate because of the shorter shot durations. The third discriminant (time-of-day) may 
have a secondary role in the discrimination of an individual event but may be quite useful in assessing man-made 
seismic activity in a regional context. We have utilized waveform correlation techniques to better understand how 
factors such as mining blast type and location within the mine are manifested in the waveforms. Initial results show 
good correlation between blast types within two main pits; as the correlation threshold is increased, we are able to 
resolve spatial location within individual pits for the simplest types of mining blasts. In the AS, we calculated these 
same discriminants for ~260 earthquakes and ~850 mining events. The amplitude ratio discriminant shows 
significant overlap of the earthquake and mining populations. Certain events do separate, but the lack of  
ground-truth makes these events difficult to identify. Similar results are seen for the time-frequency discriminant. 
We do not know if the discriminant itself fails, or if the majority of our data points are from smaller shots that have 
shorter time durations. Time-of-day results are similar to the WUS in that presumed mining events fall within 
working hours and indicate the assessment utility of this tool. These unanswered questions illustrate the need for 
detailed ground-truth information. Future studies of mining discrimination, particularly where large datasets are to 
be acquired, should involve cooperation with mine operators in order to address ambiguities such as those identified 
in the AS study. Although we see mixed results with the amplitude ratio discriminant, there is more success with the 
time-frequency and time-of-day discriminants.  

No discriminant individually is able to successfully act as a surrogate for a single-fired explosion. However, the 
three discriminants, when used in combination, can provide a means of defining a delay-fired population region that 
could be integrated into a model such as the Event Classification Matrix (ECM) to aid in identifying events that do 
not fall within traditional nuclear explosion or earthquake population bounds (Anderson et al., 2007). We have 
begun testing this methodology by using classification trees and Regularized Discrimination Analysis (RDA) to 
combine the three discriminants discussed above, which yield a statistical measure of the probability of correctly 
categorizing mining events.  
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OBJECTIVES 

The two objectives for the final component of this study build on previous work (e.g., Arrowsmith et al., 2008) 
completed on developing both a comprehensive mining explosion dataset and a suite of mining explosion 
discriminants. These objectives are the following: 

• Assessment of four mining explosion discriminants using ground-truth data in the WUS and AS. We assess 
four independent discriminants including amplitude ratios, time frequency, time-of-day, and waveform correlation. 

• Assessment of techniques for discriminant combination. We examine two strategies for combining 
discriminants including classification trees and RDA. 

RESEARCH ACCOMPLISHED 

Mining Explosion and Regional Earthquake Database 

In order to assess discriminant performance, we assembled a database of waveforms for mining events in the US and 
Russia, discussed in detail in Arrowsmith et al. (2008). In-depth analysis has focused on ground-truth (GT) data in 
the WUS (Figure 1) and data collected as part of a joint collaboration with the AS Seismological Expedition (ASSE) 
(Figure 2). 

 
Figure 1. WUS dataset used in the mining discrimination analysis. Left panel shows earthquakes  

(yellow circles) distributed across major geologic provinces (thick blue lines) and sub-provinces 
(thin blue lines). Stations are denoted by black triangles. The Black Thunder coal mine (red star) is 
in the Powder River Basin (red outline). The right panel illustrates GT data collected from Black 
Thunder; the top figure denotes the main types of shots performed at the mine, while the bottom 
figure shows specific shot information. 

 
Figure 2. Data from the AS portion of the database (red outline). (Left) Seismic stations in the AS region. 

Green stations are IRIS (BRVK, KURK, MAKZ, TLY) or International Monitoring System (IMS) 
(ZAL). Blue stations are operated by the ASSE. We did not have access to ASSE seismic data. 
(Right) Events provided to the authors by the ASSE; we were given no information on how events 
were identified as either mining explosions (red circles) or earthquakes (yellow circles). 
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Magnitude and Distance Amplitude Corrected (MDAC) Spectral Ratios 

Regional phase amplitudes are highly influenced by both propagation path and source size. In order to correct for 
these effects prior to forming ratios, we utilized the MDAC methodology described in Walter and Taylor (2002). 
The MDAC software will accept simple 1D attenuation (Q0) models or 2D tomographic imagery; we used 1D 
averages based upon the geologic features and regions noted in Figure 1 to constrain reasonable attenuation 
boundaries. Full results obtained for Q0 and the frequency scaling factor η can be found in Arrowsmith (2009). To 
correct for source size, we solved for stress drop, varying the values from 0.1 to 30 MPa for the earthquakes featured 
in Figure 1; we obtained an overall value of 0.1 MPa to best fit the data. 

In order to test whether or not the MDAC methodology was adequately removing trends related to distance and 
source size, we used an F-test to compare two scenarios: the null hypothesis assumes a de-trended population and 
the alternative hypothesis assumes a trend to the data. The F-test considers the variance around each trend-line; if the 
tabulated F-statistic (Ftab; from a standard table) is greater than the calculated F-statistic (Fobs; from the data) at the 
0.95 confidence level, we accept the null hypothesis that MDAC has successfully removed the trends. Figure 3 
illustrates one result for station PD31 in the 6.0- to 8.0-Hz band. In this case, the trend related to the source has been 
removed, but the trend related to distance has not (associated Q0 values are: Pn = 445, Pg = 345, Lg = 315), 
suggesting that the complicated paths seen in Figure 1 are not being well fit by a 1D attenuation model. Because the 
stress drop is very low, we forced the stress drop to be 3 MPa (Figure 4) and solved for attenuation (associated Q0 
values are: Pn = 240, Pg = 140, Lg = 140). While the attenuation model fits the data better, the values are below 
average for the region (see Arrowsmith [2009] for a comprehensive description of WUS attenuation, including 
references to other studies). The stress drop value of 3 MPa does not fit the data for Lg, but results in a de-trended 
population for both Pn and Pg. Both sets of results in Figure 3 and 4 illustrate the tradeoffs between source and path 
seen in the MDAC inversion, and the sensitivity of the population trend with the choice of parameters used in the 
correction process. 

 
Figure 3. Corrected earthquake log(amplitudes) for Pn (denoted as P), Pg, and Lg at station PD31 in the  

6.0–8.0 Hz frequency band for an MDAC stress drop of 0.1 MPa. The lefthand column is a function 
of mb; the righthand column is a function of distance (km). A regression line has been plotted for 
each population and the result of the F-statistic analyses are shown for each scenario, including Fobs, 
Ftab, and the associated p-value. 
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Figure 4. Corrected earthquake log(amplitudes) for Pn (denoted as P), Pg, and Lg at station PD31 in the  

6.0–8.0 Hz frequency band for an MDAC stress drop of 3 MPa. The lefthand column is a function of 
mb; the righthand column is a function of distance (km). A regression line has been plotted for each 
population and the result of the F-statistic analyses are shown for each scenario, including Fobs, Ftab, 
and the associated p-value. 

 
We have used the corrected data (using 0.1 MPa stress drop and associated attenuation) to form phase, spectral, and 
cross-spectral ratios for the eight stations featured in Figure 1. In order to find the optimal ratio at each station, we 
have used the Mahalanobis distance, a multivariate statistical approach. The Mahalanobis distance weights the 
distance between two populations based upon the population variability. We pre-selected 12 discriminants, and 
determined the best amplitude ratio by maximizing the Mahalanobis distance between the earthquake and mining 
explosion populations. This analysis was performed for four cases: all earthquakes and all mining explosions, all 
earthquakes and only cast blasts, earthquakes within 250 km of Black Thunder and all mining explosions, and 
earthquakes within 250 km from Black Thunder and only cast blasts. Results for all stations are summarized in 
Table 1. The results are very station-centric, and there is high dependence on path when considering earthquakes in 
the entire region. However, when earthquakes within 250 km of the mine are considered, discrimination 
performance is greatly enhanced at most stations, making the amplitude ratio discriminant a promising one for 
mining explosions.  
 
Table 1. The best-performing discriminants for WUS stations for the four scenarios described in the text. The 

top line in each cell indicates the discriminant used and the bottom line indicates the corresponding 
Mahalanobis distance value. Results are color-coded by general geologic regime, as defined by the 
authors based upon geologic provinces featured in Figure 1. 
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Time Frequency 

The time frequency discriminant utilizes the unique spectral signature of ripple-fired mining events as a function of 
time and has been described in detail in previous publications (e.g., Arrowsmith et al., 2006; 2007; 2008). Larger 
blasts (cast blasts) discriminate very well from the earthquake population, and station location seems to play no role 
in the success of the discriminant, consistent with the fact that this discriminant is strongly related to the distinctive 
spectral shape resulting from the long source duration. Smaller blasts merge with the earthquake population, and as 
there are many small blasts in the dataset, it would be easy to assume the discriminant was not working if we did not 
have the additional explosion features summarized in Figure 1 (right panel). Being able to constrain the type of shot, 
as well as other types of information on the blasting configuration is invaluable in assessing discriminant success 
(Figure 5). 
 

 
Figure 5. Comparison between AS time frequency results (left) and WUS time frequency results for five 

stations (right). In the AS, we have no ground-truth information to constrain event type, while in the 
WUS, we have information such as that shown in the right panel of Figure 1 (events are color-coded 
as in that panel). In the WUS, we have determined that the larger blast types, such as cast blasts, are 
essentially the only types of mining explosions that can effectively be discriminated using this 
technique. Because we do not have detailed GT information in the AS region, we do not know if the 
discriminant itself fails, or if the shots simply are too small in size (and have a short time duration) 
to effectively discriminate from the earthquake population.  

 
The Time-of-Day Discriminant 

The time-of-day discriminant is extremely useful as a means of verifying catalog consistency (Figure 6) and 
evaluating the general trends of an active seismic region (Figure 7). While this discriminant alone cannot be used to 
identify a specific event, it has the potential to help characterize new regions where man-made events are prevalent. 
When combined with a geographic context, such as in our study, and that of MacCarthy et al. (2008), we gain the 
ability to focus on areas of specific interest that have an abundance of daytime activity.  
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Figure 6. Time-of-day distributions with respect to month and hour of day for the AS dataset for both 

probable mining explosions (left) and earthquakes (right). Surface reflections of the histograms 
show trends, where lighter colors indicate larger numbers of events. The concentration of mining 
events between 10:00 and 17:00 local time as opposed to the random distribution of earthquakes 
give us confidence in the catalog data provided to us by the ASSE. 

 
Figure 7. Time-of-day map for events between 8 am and 6 pm local time in the WUS. Event locations are 

mapped into 1º bins. The daytime count is listed above the nighttime count, and bins are color coded 
by the percentage of daytime to nighttime events. Areas of high daytime activity, which do not 
correspond to known mining regions, are discussed in Arrowsmith (2009). 

 

Waveform Correlation for the Black Thunder Mine 

A clustering method based on regional waveforms has been developed and applied to a set of ground-truth data from 
Black Thunder; this mine has spatial dimensions exceeding 5 km (Figure 7) and a variety of source blasting 
practices provide a basis for investigating the strength of these tools in separating source timing and location effects. 
Preliminary results at a number of stations suggest that a hybrid technique utilizing multiple correlation cutoffs and a 
clustering algorithm might be useful in separately identifying location and source timing effects. At modest levels of 
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correlation, source locations are empirically shown to dominate. Using these results, increasingly larger correlation 
cutoffs identify nearby events with similar source timing effects. Figures 8 and 9 illustrate the result of changing the 
correlation coefficient threshold from 0.7 to 0.6.  
 

 
Figure 7. Google Earth satellite image of the mining region, showing close-up of North pits and distances 

between mining clusters. 
 

 
Figure 7. Clustering results for 60 seconds of waveform at RSSD, filtered at 2–4 Hz, with a correlation 

coefficient of 0.7. Events are colored according to the scheme in Figure 1. The various pit identifiers 
are listed in the left column. 
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Figure 8. Clustering results for 60 seconds of waveform at RSSD, filtered at 2–4 Hz, with a correlation 

coefficient of 0.6. Events are colored according to the scheme in Figure 1. The various pit identifiers 
are listed in the left column. 

 
Discriminant Combination 

Combining discriminant measures has been shown to increase overall classification power; however, difficulty lies 
in combining multiple measures in a statistically sound way while accounting for problems such as missing data. In 
a comprehensive report, Anderson et al. (1996) investigated eight classification methods for combining 
discriminants. Current discussions with Dr. Dale Anderson about our dataset have affirmed two methods, 
classification trees and RDA (Anderson and Taylor, 2002) to be the most suitable for merging discriminant 
measures. The classification tree considers each discriminant value, partitioning event types into homogenous 
regions. The process is iterative, and can be branched or pruned based upon the number of discriminants, events, and 
probability levels achieved at each step in the iteration.  

We follow the procedure outlined in Anderson and Taylor (2002) to establish RDA decision rules for identifying 
events. RDA is a method developed by Friedman (1989) to deal with highly correlated discriminants, and potentially 
small training samples. RDA encompasses two standard discrimination techniques, linear and quadratic 
discrimination, and builds a weighted-average covariance matrix. This covariance matrix is dependent on two 
smoothing parameters, γ and λ. Figure 3 of Anderson and Taylor (2002) illustrates the effect of adjusting γ and λ in 
order to best define decision regions that fit the true probability of the event classes. An unknown event can then be 
identified using these decision regions in combination with the Mahalanobis distance metric.  

To begin defining decision regions for mining explosions, we have integrated data at all the WUS stations into one 
single database of measurements consisting of event ID, time-frequency discriminant value, time-of-day,  
Pg/Lg (6–8 Hz) measurement, geologic region, source type (SEQ, OEX, MEX), where SEQ is a shallow earthquake, 
OEX is a mining explosion other than cast blast, and MEX is a cast blast. We use a classification tree to characterize 
probable earthquakes based on time-of-day. Events that fall within the range of hour GMT 18 through 24 (the time 
when most mining events occur at Black Thunder) are considered unknown events and are set aside for further 
analysis using RDA.  

We searched over γ and λ space using 80% of the dataset to select optimal values, where optimization is achieved by 
minimizing the false discovery rate (i.e., the false positive rate, given H0 = explosion). For each matrix of values, we 
select the minimum γ and λ pair. If there is more than pair that fits the condition, we choose the value that is closest 
to the origin. We then used 20% of the dataset to test values and make predictions on our ability to categorize 
events, repeating 100 times for the best γ and λ. The initial results indicate the mean probability of correctly 
categorizing a mining explosion given a mining explosion is approximately 0.75. 
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Although further work is needed, the three discriminants, when used in combination, show the potential for defining 
a delay-fired population region that could be integrated into a model such as the ECM to aid in identifying events 
that do not fall within traditional nuclear explosion or earthquake population bounds (Anderson et al., 2007).  

CONCLUSIONS AND RECOMMENDATIONS 

The optimum discriminant for mining explosions would uniquely categorize all mining events, and clearly separate 
them from earthquakes and, more importantly, underground nuclear explosions. Such a discriminant does not appear 
to exist; the complex and variable nature of mining explosions, and complexity of path effects at regional distances 
ensure that this is a difficult problem. Despite this, we have outlined a suite of independent discriminants—each of 
which provides a different constraint on source physics—that, in combination, can correctly categorize events as 
mining explosions with a probability of approximately 0.75. Although further work is required to improve upon this 
result, this study shows that there is considerable promise in developing, if not the optimum discriminant, at least a 
practical approach that can bring strategic value to operational monitoring needs. 
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