
WAVE PROPAGATION FROM COMPLEX 3D SOURCES USING THE REPRESENTATION THEOREM 

Jeffry L. Stevens and Heming Xu 
 

Science Applications International Corporation 
 

Sponsored by the Air Force Research Laboratory 
 

Contract No. FA8718-08-C-0010 
Proposal No. BAA08-57 

 
 

ABSTRACT 

In spite of extensive prior research on generation of seismic waves by underground nuclear explosions, it is still not 
possible to provide a complete explanation for the observed wavefields, particularly at regional distances. 
Spherically symmetric explosion models embedded in layered elastic media effectively model the P phases 
generated by explosions, and the major characteristics of some reflected and transmitted phases. Nonlinear 
axisymmetric finite difference calculations of explosions including gravity and the effect of the free surface can 
model a more realistic explosion source that directly generates shear waves. These models explain more 
characteristics of explosion-generated seismic waves, including some aspects of regional shear phases. However, it 
is clear that linear and nonlinear near-source 3D effects are important in many cases. SH waves are commonly 
observed within a few km of explosions, too close to have been generated by (simple) conversion of vertical and 
radial components, and often larger than those components. Furthermore, it has not been established what impact 3D 
effects have on discriminants and on explosion yield estimates. It is important, therefore, to be able to model and 
understand how 3D source and source region heterogeneity affect the seismic wavefield, and what impact this has 
on parameters used for nuclear monitoring. 

We are in the second year of a project to develop and test a three-dimensional nonlinear finite element code 
CRAM3D, which will be used to calculate nonlinear explosion sources that have both 3D source geometry and may 
occur in a 3D heterogeneous medium. The code includes the same well-tested material models that have been used 
in earlier axisymmetric calculations. In addition, we are developing algorithms based on the representation theorem 
to propagate the motion from these source region calculations to any desired distance. We have implemented a 
technique that allows us to propagate the results of near source 3D finite element calculations to regional and 
teleseismic distances. The Green’s function and its derivatives are used in conjunction with the numerical solutions 
on a monitoring surface enclosing the complex source region. Full-waveform solutions at distance, due to complex 
explosion sources, are computed with the full-waveform Green’s function using wavenumber integration; surface 
wave solutions are computed with the surface wave Green’s functions using mode summation; and far field body 
wave solutions are computed with the outgoing waves from the source region. The excellent agreement in the 
surface wave portion between the full-wave solutions and surface-wave solutions demonstrates the accuracy of the 
implementation of the representation theorem and the respective Green’s functions and their derivatives. 

To test the code, we have performed calculations using cavities of three shapes: spherical, rectangular and elliptical, 
each with the same volume. An explosion with the same yield was detonated inside each cavity. We compare the 
solutions from these three cavity explosions in the near field and at distance. Gravity is included in the calculations, 
and we start with an equilibrium solution obtained by running the finite-element CRAM3D with overburden 
pressure only, prior to the start of the explosion calculation. Nonlinear deformation is seen around the cavity. The 
results show very good agreement between 2D and 3D solutions at distance for the spherical cavity explosion. 
Nonspherical wave components from nonspherical rectangular and elliptical cavities are clearly seen in the near 
field. The rectangular cavity shows more pronounced tangential motion than the elliptical cavity away from axes of 
symmetry.  
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OBJECTIVES 

The objective of this project is to investigate the generation of complex seismic waves by explosions in media with 
3D heterogeneity using a method based on the exact representation theorem for propagating complex 3D source 
calculations to local, regional and teleseismic distances. 

RESEARCH ACCOMPLISHED 

Introduction 

Source physics, near source scattering, and propagation effects are all important to understanding seismic phases 
used in nuclear monitoring. Significant bodies of literature exist that address each subject individually. In addition to 
extending our understanding of source physics and near source scattering to include the effects of realistic 3D 
heterogeneity, this project links the progression of energy from its generation by the source, through the near source 
region, and into its partitioning among local, regional, and teleseismic phases. Distinguishing the far-field P- and  
S-waves enables us to quantify the effects of 3D structure on both P- and S-wave generation. Complete regional 
waveforms show how this energy is partitioned among the distinct phases, which are important to event detection, 
identification, and magnitude estimation. How energy is distributed among surface wave modes determines Lg 
amplitudes and Rg amplitudes, including near source conversions between these phases. Modal excitation of Lg as 
well as Rg has a significant depth dependence that is often neglected in nuclear monitoring studies (Baker et al., 
2004), and these amplitudes can be disrupted further by near source effects and source region structure. This can 
either degrade or improve discrimination capability depending on how well it is understood. 

While it is not surprising to observe SH waves from any single event, it is surprising to note it is always present; at 
regional distances, SH scales with yield about as well as P-waves. While there are many mechanisms, such as  
near-source scattering, tectonic release, etc. that can generate SH waves, all of these effects should be highly 
variable from one event to the next. To address this question, we need to look at the types of 3D source effects that 
can exist, the range of variability that would be expected from them, and whether the predictions are consistent with 
observations. 

Source Region Calculations and Propagation Using the Representation Theorem 

Our approach is to perform 3D explosion source region calculations, and then to propagate the wavefield to local, 
regional and teleseismic distances using layered earth Green’s functions. We are interested in near-source 
heterogeneities in both the nonlinear and linear regimes, and therefore require both nonlinear and linear 3D codes to 
model the source region. In previous projects, we have used two nonlinear codes, STELLAR and CRAM, which are 
described briefly in Table 1 (we have also used the 1D nonlinear code SKIPPER, which is a spherically symmetric 
version of CRAM), and the 2D and 3D linear elastic code TRES3D.  

Table 1. Numerical simulation tools used in this project 
Numerical Simulation Tools 

STELLAR Eulerian finite difference code. Used to simulate the early time 
history of the explosion shock. It handles material strength correctly, 
which is difficult for a Eulerian code. Uses second order accurate 
Riemann solver scheme. 1D, 2D planar and axisymmetric, and 3D. 

CRAM Lagrangian nonlinear finite difference code. Has been used 
extensively for axisymmetric explosion calculations. A 3D version 
of the code is being developed in this project. 

TRES3D Elastic finite difference code. 2D planar and axisymmetric, and 3D. 
Elastodynamic Representation Theorem The time dependent displacements and stresses from 3D source 

region calculations are saved on a monitoring surface located outside 
of the region of nonlinear response and/or 3D heterogeneity. A 
numerical implementation of the representation integral is then used 
to compute the corresponding far-field seismic radiation. 

 

In past projects, we have used these codes in the following ways: 
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1. Axisymmetric CRAM was used together with the representation theorem to propagate the results of 
nonlinear axisymmetric finite difference calculations to regional and teleseismic distances (Day et al., 
1987; Stevens et al., 1991; Stevens et al., 2004).  

2. Axisymmetric STELLAR was used to calculate the early stages of an explosion. The solution at an 
appropriate time was overlain onto CRAM to be propagated out to the linear, elastic region. The 
representation theorem was used to propagate the waveform to regional and teleseismic distances (Rimer et 
al., 1994). A similar technique was used to overlay results from the Los Alamos National Laboratory code 
SOIL onto CRAM and propagate the results (Davis et al., 1992). 

3. 3D STELLAR was used to calculate near-field waveforms from explosions in rectangular cavities (Stevens 
et al, 2006). 

4. TRES3D was used to calculate the scattering from explosions in a region with 3D heterogeneity and 
topography (Stevens et al., 2004). 

In the current project, we are doing the following: 1) using STELLAR to perform very near source nonlinear 3D 
calculations and TRES3D to perform linear elastic near source and source region 3D calculations; 2) developing a 
3D version of CRAM to model explosions from the source out through the very important nonlinear to linear 
transition region; and 3) completing the implementation of the elastodynamic representation theorem for full 
waveforms, modes and body waves. 

The technique for propagating numerical calculations using the representation theorem is to save displacements and 
stresses on a monitoring surface surrounding the nonlinear and/or heterogeneous region of the calculation, and then 
to convolve these with a Green’s function appropriate for the external region (Stevens et al, 1991). In the cases that 
we have done previously, two-dimensional axisymmetric nonlinear finite difference calculations were performed to 
model the nuclear explosion, and the stresses and displacements from the calculation were saved on a cylindrical 
surface in the elastic region outside the region of complex nonlinear behavior. We then invoked the representation 
theorem and integrated the stresses and displacements with an axisymmetric Green’s function to calculate the 
displacement at any point outside of the calculation. We performed such calculations in 2D, using Green’s functions 
for far-field body waves, for modes and for full regional waveforms using wavenumber integration. The equations 
for the Green’s functions for surface waves are given by Bache et al. (1982). The Green’s functions for the complete 
seismograms are computed using a ring load source, from an algorithm based on the work of Luco and Apsel (1983) 
and Apsel and Luco (1983). The Green’s functions for body waves are generated by a procedure similar to that 
described by Bache and Harkrider (1976) using a saddle point approximation to calculate a far-field plane wave for 
a given takeoff angle from a source in a plane-layered medium. Our objective in using multiple types of Green’s 
functions is to gain as much insight as possible into the nature of the seismic wavefield generated by the source. An 
important part of the current project is to adapt these techniques to propagate seismic waves from 3D source 
calculations. Although any closed surface can be used for representation theorem integration, we use a cylindrical 
surface for axisymmetric problems, and a rectangular surface for 3D problems. 

3D implementation of the representation theorem 

The key to extending the axisymmetric representation theorem discussed above to 3D is to recognize that while the 
deformation in the source region may be arbitrarily complex, if the structure can be approximated as a plane-layered 
medium outside of the source region, then the known Green’s function for a plane-layered medium applies (this also 
assumes that we can neglect the interaction of any backscattered waves returning to the source region after leaving 
it). Note that the representation theorem is exact. That is, no matter how complex the 3D motion is on the source 
region boundary, it will be correctly propagated by the representation theorem. The following benchmark test 
demonstrates the performance of the method by comparing the results with equivalent finite difference calculations 
and wavenumber integration seismograms. 

The representation theorem states that displacement at an observation point is made up of contributions due to body 
forces throughout the source volume, plus contributions due to the traction and displacement on the source volume 
surface (Aki and Richards, 1980). In the three-dimensional numerical finite difference calculations, we save 
displacements and stresses due to the seismic source on a monitoring surface on the boundary of a rectangle (five 
planar surfaces, excluding the upper surface), and calculate Green’s functions from each point on the monitoring 
surface to the receiver and thus, the synthetic seismogram at the receiver point X outside of the monitoring surface is 
obtained by integrating over the monitoring surface MS : 
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in the frequency domain, where ( ; )i
jG Xξ and ( ; )i

jkS Xξ  are the Green’s function and the stress tensor on the 

monitoring surface due to a unit impulsive force at X in direction i,  M
jT is the traction on the monitoring surface due 

to the seismic source, u is the displacement on the monitoring surface, and n is the normal to the monitoring surface. 
The operator * denotes convolution and the summation convention is assumed.  

Equation 1 is applicable to any Green’s function for the exterior model, and so we can use a full waveform Green’s 
function, far-field body wave Green’s function, and/or modal Green’s function as we have discussed earlier for 
axisymmetric problems. We have implemented this technique for full waveform seismograms calculating the 
Green’s functions using wavenumber integration. We have also implemented the technique for body waves and for 
modes using corresponding Green’s functions. 

The synthetic seismograms are computed using the following steps: 

1. Displacements and stresses are saved on the monitoring surface during the finite difference calculations. 

2. If necessary, the monitoring solutions are resampled onto a coarse grid, as permitted by the required 
resolution.  If there is a symmetry boundary, the entire monitoring surface is constructed first.  

3. The finite difference solutions at each point on the monitoring surface are transformed into the frequency 
domain. 

4. The displacement and stress Green’s functions due to the three orthogonal forces at the receiver location 
are calculated for each location on the monitoring surface in the frequency domain (using reciprocity).  

5. Equation (1) is used to obtain the solution at the receiver in the frequency domain. 

6. The solution is transformed back to the time domain. 

Step 5 is implemented with a generalized interface code, which takes as inputs the monitoring wavefields and the 
Green’s functions and stress fields for any of the full-waveforms, surface waves or body waves. Specifically,  
full-waveform solutions at distance, due to complex explosion sources, are computed with the full-waveform 
Green’s function using wavenumber integration. Surface wave solutions are computed with only with the surface 
wave Green’s functions using mode summation. Far field body wave solutions are computed with the outgoing 
waves from the source region. The principal advantage of this approach is that it allows us to perform detailed 
calculations of the source region and then propagate the results to distances that would be impractical or impossible 
to include in the same numerical calculation. In addition to reducing cost and time, the hybrid method is also more 
accurate, as numerical dispersion increases with the size and duration of numerical calculations.  

Benchmark Tests with Gravity 

We have implemented an explicit three-dimensional Lagrangian finite element algorithm that is capable of using 
multiple processors (Stevens and Xu, 2008). All of the nonlinear material models from 2D CRAM have been 
implemented and gravity is included. The cavity is placed near the center of the grid and is enclosed by a spider grid 
which facilitates applying the pressure boundary condition and rezoning elements, as implemented in the two-
dimensional axisymmetric code, CRAM.  

To test the code, we have performed calculations using three kinds of cavities: spherical (radius 5m), rectangular 
(each side 8.06m) and elliptical (three axis lengths are 6m, 5m and 4.1667m), each with the same volume. The same 
yield (0.2kt) explosion is detonated in each cavity. The material external to the cavity is a model for Degelen granite 
(Stevens et al., 2003). The model consists of two layers: the top layer is 30m thick elastic and the bottom layer is 
nonlinear. Gravity is included in the calculations, and we start with an equilibrium solution obtained by running the 
finite-element CRAM3D with overburden pressure only, prior to the start of the explosion calculation. We compare 
the solutions from these three cavity explosions in the near field and at distance.  The shapes of the cavities are 
shown in Figure 1 and the seismograms in the near field are shown in Figure 2. Each seismogram plot corresponds 
to a receiver in the same pattern in Figure 1. The radial, tangential and vertical components are represented by red, 
green and blue lines. The top right plots correspond to the spherical cavity and show no visible tangential motion 
(green lines) at these receivers. The bottom left plots correspond to the rectangular cavity and show clear tangential 
motion off the symmetry axes (vertical, horizontal and diagonal). The bottom right plots correspond to the elliptical 
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cavity and show some visible tangential motion off the symmetry axes (vertical and horizontal). The main waveform 
characteristics in the elliptical case are quite similar to those in the spherical case.   

 
Figure 1. Three cavity shapes with the same volume used for 3D nonlinear explosion calculations. 

 

  

  

Figure 2. Near field receiver locations (top left): blue circle indicates the cavity location. The near field 
waveforms due to different cavities are shown at top right and bottom. Red, green and blue lines 
correspond to radial, tangential and vertical components. Note the tangential components from the 
non-spherical cavities (bottom two figures). 
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All the three explosions yield nonlinear deformation around the cavity in Figure 3. The horizontal (top) and vertical 
(bottom) slices across the cavity center are shown for comparison. Again, both spherical and elliptical cavities show 
similar patterns but the nonlinear deformation region is enlarged for the rectangular cavity relative to the other two 
cavities, most likely caused by the effects of the corners. 

 
Figure 3. Nonlinear deformation extent around the cavities. The top plots are the horizontal slices across the 

cavity center and the bottom illustrate vertical slices. The asymmetry in the Z direction is caused by 
the variation of overburden pressure with depth. More nonlinear deformation occurs above the 
cavity than below. 

Far field solutions are obtained with the representation theorem (Equation 1) by using the displacements and stresses 
recorded on the monitoring surfaces in the finite-element calculations. An interface code was developed to correctly 
match the numerical solutions with the Green’s functions and the corresponding stresses. We compare the full 
waveforms and surface waves at two different locations with the same distance. One is at x=2000m,y=1500m 
(location 1, no symmetry) on the surface and the other at x=2500m and y=0m (location 2 at the symmetry axis). The 
full waveforms are computed by the wavenumber integration method and the surface waves are computed using 
mode summation. The results at the two locations for the three cavities are shown in Figure 4. The left corresponds 
to the location 1 and the right location 2. Each panel has three components. The red and green lines indicate the full 
waveform solutions and surface wave solutions, respectively, and the blue dashed lines, the 2D full waveform 
solutions in the spherical cavity case. All the waveforms are low pass filtered below 5Hz. It is clearly seen that the 
mode summation solutions (green lines, Figure 4) match the surface wave portions of the full waveform solutions 
(red lines, Figure 4) for all the cavity types at two locations very well. For the spherical cavity full-waveform 
solutions, there is also very good agreement between 2D (blue dashed lines, Figure 4) and 3D, validating the proper 
implementation of the Lagrangian finite-element algorithms and the representation theorem in 3D. It is also noted 
that the spherical and elliptical cavities have the similar waveforms at distance, as in the near field. The wave 
amplitudes are slightly larger for the rectangular cavity (center row, Figure 4) and consistent with nonlinear 
deformation extent. The tangential motions are very small for the three cavities and indicate that the source 
asymmetry due to a small yield, as seen in the horizontal nonlinear deformation distribution (top row, Figure 4), is 
quite weak at low frequencies, which is also verified by comparing the waveform solutions at the two locations. 
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Location 1  x=2000m, y=1500m Location 2 x=2500m,y=0m 

 
 

  

  

Figure 4. Far field waveforms using the wavenumber integration method and mode summation. Waveforms 
at location 1 are shown on the left, location 2 on the right. There is excellent agreement between the 
full-waveform solutions and surface wave solutions for the surface wave part of the waveform. 
Excellent agreement is also demonstrated for the full waveform solutions in 2D (blue dashed lines) 
and 3D (top). 
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CONCLUSIONS AND RECOMMENDATIONS 

We are in the second year of a project to understand 3D effects on seismic radiation from underground nuclear 
explosions. We have nearly completed development of a 3D version of CRAM, the Lagrangian code we have used 
previously for performing axisymmetric calculations of underground explosions. We have also implemented an 
interface code, which utilizes any Green’s functions in order to propagate the results of the near field 3D 
calculations to regional and teleseismic distances using the representation theorem. The objectives are to complete 
implementation of the numerical methods and then perform 3D calculations to understand and model the effects of 
3D source region heterogeneity and the seismic response to it in a realistic source scenario.  
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