
AN APPROACH FOR DENOISING WAVEFORM DATA BY AUTO-REGRESSIVE ALGORITHM 

 
Nobuo Arai, Takahiko Murayama, Makiko Iwakuni, and Mami Nogami 

National Data Center-1 of Japan (Japan Weather Association) 

 
Sponsored by the CTBT National Operations, Ministry of Foreign Affairs, Japan 

 
 
 

ABSTRACT 
 
The waveform data from the Comprehensive Nuclear-Test-Ban Treaty (CTBT) International Monitoring System 
(IMS) are mainly used for making the epicenter and characteristics of an observed event clear. Waveform data 
usually consist of signals from natural or man-made phenomena and site-specific noise from the ambient 
surroundings. 
 
Unfortunately, if the dominant frequency of a signal is within the frequency band of the site-specific noise and the 
amplitude of the signal is close to the detection limit, the signal may be buried within the noise. 
 
Bandpass filtering of data is often used to reduce the influence of the background noise (such as the site-specific 
noise) and enhance signal-to-noise ratios (SNRs). However, this approach is not adequate for extracting signals from 
raw data because such an approach does not distinguish the nature of different waveforms. 
 
In order to remove site-specific noise components from observed raw data, an auto-regressive (AR) algorithm can be 
applied to extract a pure signal. The time series of the background noise is simulated by an AR model, and then a 
pure signal would be extracted by removing the simulated noise component from the raw data. 
 
Effectiveness in utilizing such a concept has been tested on infrasound data observed at the IMS with affirmative 
results. 
 
In this research, we demonstrate both the possibility and the capability of denoising waveform data utilizing the AR 
algorithm technique. 
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OBJECTIVES 

Sources of infrasonic noise predominantly consist of eddies generated by local atmospheric disturbances  
(e.g., “local winds”). Reducing the influence of local winds or extracting a signal from noisy data is a significant 
issue at many CTBT IMS infrasound monitoring stations.  

We present data from the CTBT infrasound monitoring station, IS30. Although each array element is designed to 
minimize the effects of wind-generated noise, it is difficult to extract signals from observed data when strong winds 
occur near the station. 

Bandpass filtering of data is often used to remove this wind-generated noise. However, this approach is not adequate 
for extracting signals from raw data because such an approach does not distinguish the nature of different 
waveforms. Moreover, if the dominant frequency of the signal is within the frequency band of the  
site-specific noise and the amplitude of the signal is close to the detection limit, the signal may be buried within the 
noise. 

Therefore, the objective of this research is to reduce the influence of background noise (such as wind-generated 
noise) and enhance the SNR by using a new technique that is frequency-band independent. 

 

RESEARCH CONDUCTED 

Infrasonic noise is predominantly wind-generated. Generation of wind noise is described as a stochastic process, and 
the state of wind can be stationary within a short period. 

Thus, to remove site-specific noise components from observed raw data, an AR algorithm is applied for the 
extraction of a pure signal. The time series of the background noise is simulated by an AR model, and the pure 
signal is extracted by removing the simulated noise from the observed raw data. 

The AR algorithm is a new technique for denoising waveform data and consists of three components: the simulation 
method of the background noise, the reduction procedure of the background noise, and the extraction of pure signal, 
and is described as follows. 

 

Fundamental conceptual model of the waveform data 

The concepts of denoising and the subsequent extraction of pure signal are shown in Figure 1. 

As shown schematically in the outline below, the approach we used in this research consisted of eliminating 
background noise from the observed data so as to obtain pure signal. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Conceptual image of denoising procedure on waveform data. 
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The actual observed infrasound data (yn) also contains a trend component in addition to the background noise 
illustrated in Figure 1. 

Hence, we assumed the following equation based on the time series analysis method (e.g., Vaseghi, 1996;  
Kitagawa, 1993): 

    (1) 

where tn is the trend component, rn is background noise, sn is signal, and wn is observation noise, at time n.  

 

State space model 

In order to estimate the time series of each component, we utilize the state space model. With the assumption that yn 
is the time series of l variate, the state space model is represented by the following equation: 

  (System Model)   (2) 

   (Observation Model)  (3) 

where xn is the state vector, which is directly unobservable; k is the dimensional vector; wn is the system noise (or 
the state noise); and m is the order dimensional white noise in accordance with zero mean and the variance-
covariance matrix (Qn). 

On the other hand, εn is the observation noise, and l is the order dimensional white noise in accordance with zero 
mean and the variance-covariance matrix (Rn).  

F, G, and H are matrixes of k  k, k  m, and l  k, respectively. 

 

The state space model is interpreted in two ways, as follows: 

1) The observation model (Equation [3]) is assumed to be the regressive model. 

In this case, the model shows the mechanism in which yn is observed. The state xn shows the regression 
coefficient, and the system model shows the change of the regression coefficient with respect to time. 

2) The state vector xn is the signal to be estimated. 

In this case, the system model shows the mechanism of the signal generation, and the observation model shows 
the shape when a signal is actually observed, with the noise component added to that signal. 

Applied concrete cases are explained in terms of each component model. 

 

The following section describes each component model (rn, background noise; sn, signal; and tn, trend component;). 

Background noise component model and signal component model 

We have modeled the background noise component rn and the signal component sn using an AR model because their 
time series’ are short period in nature. 

An AR model is a type of random process that is often used to model and predict various types of natural 
phenomena. AR models of background noise rn and signal sn are given by the following equations: 

    (4) 

    (5) 
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These are based on parameters aj and bj, where  and . There is a direct correspondence between 
these parameters and the covariance function of the process. This correspondence can be inverted to determine the 
parameters from the autocorrelation function (which is itself obtained from the covariances), where un and vn1 are 
white noise processes each with a zero mean and respective variances τ1

2, τ2
2. 

Using Equation (4) as an example and defining the state vector as , the following equations 
hold between xn and xn-1:  

    (6) 

  (7) 

where F1 and G1 is a matrix of m  m and an m-dimensional vector, respectively. And, as the first component of the 
state (xn) is rn, the observation model (rn) (Equation [8]) below, given  is: 

     (8) 

The variances of the system noise and observation noise are  and ; thus, the state space model of the 
AR model is given by Equation (8). 

As in the case of the background noise model, when the matrices of the state space model are assumed, see 
Equations (9) and (10), the state space model of the signal component is represented by Equation (11). 

 (9) 

     (10) 

      (11) 

Trend component model 

Infrasound observations contain long-period pressure changes (from a few minutes to a dozen or so minutes), such 
as a gravity wave of the Earth. We estimated the time series of a long-period wave by using the trend component 
model tn. 

The simplest way to estimate the trend of a time series is to use the polynomial trend model. This model is expressed 
by the following equation (the time series [yn] is composed of the polynomial equation [tn] and residuals [wn]): 

      (12) 

where wn is a white noise process with zero mean and variance σ2. The trend component model tn is the polynomial 
equation represented by the following equation: 

    (13) 

This equation is the specific model. In order to extend this model to a more flexible function, the kth-stochastic 
difference equation (14) is provided as a useful alternative. In this equation, it is assumed that the kth difference of tn 
is close to zero. 

      (14) 
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where vn2 is a white noise process with zero mean and variance τ3
2.  

The trend component model (14) is generally represented by the following equation, given  (the time 
subtraction operator defined by ): 

   (15) 

When ck is defined by , Equation (15) is represented by the following: 

    (16) 

This model can be considered the AR model of the kth-order dimension although not the stationary state. Therefore, 
when the matrices of the state space model are assumed, as in Equations (17) and (18), the state space model of the 
trend component model is represented by Equation (19). 

   (17) 

    (18) 

      (19) 

 

The parameter setting of the state space model for the resolution of the observed infrasound data 

When the equations for each time series component are combined with the state space model explained above, the 
following parameters of the state space model are provided. 

 (20) 

By using the state space model defined by Equation (20), the observed data are broken down into each waveform 
(the trend, the background noise, and the signal). 

Thus, we can take away the trend and background noise from the observed data to finally get a waveform consisting 
of pure signal. 

Kalman filter 

In dealing with the state space model, it is a vital hypothesis that the state (xn) is estimated based on the observed 
data of the time series (yn). In order to estimate this state, we have used the Kalman filter algorithm in this research. 
The Kalman filter is a recursive estimator and based on linear dynamical systems discretized in the time domain. We 
could effectively calculate the conditional marginal distribution of the state (xn). In what follows, the notation  
represents the estimate of x at time n, given observations up to and including time m. 

The state of the filter is represented by two variables: 

: the estimate of the state at time n given observations up to and including time m 

: the error covariance matrix (a measure of the estimated accuracy of the state estimate) 
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The Kalman filter has two distinct phases: <Predict> and <Update>. The predict phase uses the state estimate from 
the previous time-step to produce an estimate of the state at the current time-step. In the update phase, measurement 
information at the current time-step is used to refine the prediction to arrive at a new, more accurate state estimate, 
again for the current time-step. 

< Predict > 

     (Predicted state)     (21) 

  (Predicted estimate covariance)  (22) 

 

< Update > 

 (Kalman gain)    (23) 

  (Updated state estimate)   (24) 

   (Updated estimate covariance)  (25) 

 

Order dimension of the trend model and AR model 

With regards to the order dimension of the trend model and AR model, we have used the Akaike Information 
Criterion (AIC). AIC is a measure of how well an estimated statistical model fits (e.g., Sakamoto, etc., 1981). It is 
based on the concept of entropy, which in effect offers a relative measure of the information lost when a given 
model is used to describe reality and can be said to describe the tradeoff between bias and variance in model 
construction, or loosely speaking, that of precision and complexity of the model. 

AIC is a tool for model selection. Given a dataset, several competing models may be ranked according to their AIC, 
with the one having the lowest AIC being the best. From the AIC value, one may infer that, for example, the top 
three models are in a tie and the rest are far worse, but one should not assign a value above which a given model is 
“rejected.” 

The AIC is derived by the following equation: 

    (26) 

where k is the number of parameters in the statistical model, and  is the maximized value of the log-likelihood 
function for the estimated model. 

 

Examples of the Application of Waveform Denoising  

Examples of removing the trend and the noise, resulting in the extraction of pure signal, are shown in Figures 2 
through 4. 

Below is a case of an aircraft that crashed while attempting to land at the Narita Airport in Japan on March 22, 2009. 
The infrasound signal was generated by the explosion, and CTBT IMS infrasound monitoring station IS30 detected 
the signal. The figure below shows that once the trend and the noise components are eliminated, pure signal is 
clearly detected.  
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Figure 2. The infrasound waveform (documented during an aircraft accident on 22 March) recorded at the 

CTBT IMS infrasound station IS30 and the estimated results of each time series, namely (top) the 
observed raw data, (top middle) the trend component simulated by the trend component model, 
(bottom middle) the background noise simulated by the AR model, and (bottom) the extracted 
infrasound signal.  

The case of a volcanic eruption is shown in Figure 3. 

Mt. Asama, which is located in central Japan, experienced a minor eruption on February 2, 2009, and the CTBT 
IMS infrasound monitoring station IS30 recorded an infrasound signal. By means of eliminating the trend and the 
noise components from the observed data, the infrasound signal generated by the eruption is clearly detected.  
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Figure 3. The infrasound waveform (produced as a result of the Mt. Asama eruption on February 2, 2009) 

recorded at the CTBT IMS infrasound station IS30 and the estimated results of each time series, 
namely (top) the observed raw data, (top middle) the trend component simulated by the trend 
component model, (bottom middle) the background noise simulated by the AR model, and (bottom) 
the extracted infrasound signal. 

A lightning occurrence is shown in Figure 4. 

IS30 recorded an infrasound signal when lightning struck approximately 60 km away from the array on July 27, 
2008. After eliminating the trend and the noise components, the pulsed infrasound signal produced by the lightning 
is detected.  
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Figure 4. The infrasound waveform (produced by lightning on July 27, 2008) recorded at the CTBT IMS 

infrasound station IS30 and the estimated results of each time series, namely (top) the observed 
raw data, (top middle) the trend component simulated by the trend component model, (bottom 
middle) the background noise simulated by the AR model, and (bottom) the extracted infrasound 
signal. 

 

 

 

 

 

 

2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

769



  

CONCLUSIONS AND RECOMMENDATIONS 

As has been demonstrated above, in order to remove site-specific noise (such as wind-generated noise) components 
from observed raw data, an AR algorithm can be applied to extract a pure signal. The time series of the trend and the 
noise have been simulated by the trend model and AR model respectively, and then a pure signal can be extracted by 
removing the simulated noise component from the observed raw data. 

Effectiveness in utilizing such a concept has been tested by infrasound data observed at the CTBT IMS infrasound 
monitoring station IS30, with positive results in several cases. However, the effectiveness of the AR model was not 
substantially discussed and examined and should be continuously evaluated by using other infrasound monitoring 
data. 
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