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ABSTRACT 
 
We add relative arrival-time measurements that are derived from waveform correlation to the Bayesloc multiple-
event location algorithm. Bayesloc is a formulation of joint probability over event locations, travel time corrections, 
phase labels, and arrival-time measurement errors. The Bayesloc formulation is hierarchical with distinct statistical 
models for each component of the multiple-event system, including prior constraints for any of the parameters. 
Bayes’ Theorem allows calculation of the joint probability for hypothesized configurations of Bayesloc parameters, 
which facilitates using the Markov-Chain Monte Carlo (MCMC) method to draw samples from the joint probability 
function. The marginal posteriori distribution for each parameter or covariance between parameters is inferred from 
MCMC samples. Correlation-based picks are integrated into the Bayesloc formulation by including a new category 
of arrival time measurement that is derived from correlation of empirical waveforms. Because relative picks are 
derived from correlation between two waveforms and absolute-time picks are made by analysis of a single 
waveform – typically an analyst, error processes for relative and absolute arrival time measurements are 
independent. Relative pick precision is formulated as a function of correlation coefficient and the time-bandwidth 
product of the correlated waveforms, and absolute arrival times precision – as described in previous work – is 
formulated as a function phase type, the station, and the individual event.   
 
Bayesloc functionality is unchanged for absolute arrival-time data set, and Bayesloc operate as a double-difference 
locator – with the added benefit of data error modeling – for correlation picks data sets. In the general case – where a 
data set is a combination of correlation and analyst picks – the precise relative picks provide a cross check on the 
characterization analyst picks errors and improves identification of outlier analyst picks, both of which reduce 
location errors and estimates of travel time corrections.  Improved measurement precision and estimation of travel 
time corrections enhances the utility of Bayesloc as a locator, and improved data-set consistency and posteriori error 
estimation enhance the utility of Bayesloc in the development of travel time calibration (e.g., tomography) data sets. 
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OBJECTIVES 

Introducing differential arrival time measurements into Bayesloc enables direct use of waveform correlation picks, 
which are the most precise type of arrival-time measurement available. While analyst picks will comprise the vast 
majority of P-wave arrival-time measurements for the foreseeable future, introduction of waveform-correlation picks 
into the location and calibration system is a step towards full utilization of the waveform data for location 
(Waldhauser and Ellsworth, 2000; Schaff et al., 2004; Richards et al., 2006). Recognizing the need to accommodate 
both types of arrival time measurements – analyst picks and waveform correlation – we have formulated an 
extension to Bayesloc that accommodates direct input of differential arrival times.  Specifically, Bayesloc now 
accepts the time difference between arrivals of the same phase type from two events at a common station.  The 
correlation coefficient (and time bandwidth in later versions) of the waveform correlation is also input, which is 
used as a scaling factor in the formulation of measurement precision. 
 
Direct use of differential times generally leads to improved precision of relative locations and can improve absolute 
location in cases with outstanding local-network coverage (Menke and Schaff, 2004). For most regional and 
teleseismic networks, continuing the use of absolute-time picks provides needed control on absolute location, and 
the introduction of differential times can provide precise relative locations. 
 
Combining absolute and differential arrival times in Bayesloc allows differential times to aid in the development of 
travel time calibration data sets (e.g., Myers et al., 2011). Importantly, the errors of absolute-time and differential-
time data are treated independently, and both error processes are estimated in the Bayesloc relocation procedure. 
Separating error processes is justified because correlation-based picks avoid the considerable error that is introduced 
by the measurement of arrival onset. This approach leads to an improved characterization of measurement errors, 
data weighting, and identification of outliers in the absolute-time data set. 
 
 
RESEARCH ACCOMPLISHED 

Bayesloc  
Bayesloc is a formulation of the joint probability function that spans hypocenters, travel-time corrections, pick 
precision, and phase labels. Initial versions of Bayesloc were tailored for application to event clusters (e.g., 
aftershock sequences), with travel-time correction and pick precision formulations that were designed for 
robustness. By introducing a datum-specific travel time corrections to the travel-time correction model, Myers et al. 
(2011) extend Bayesloc to data sets that cover arbitrarily large geographic areas. Importantly, Bayesloc phase labels 
are probabilistic, and at no point is any one phase label chosen. Possible labels include all phases under 
consideration and the possibility that the label is erroneous. Bayesloc allows prior constraints on any aspect of the 
multiple-event system, enabling directly utilization of previous work that statistically characterizes the accuracy of 
event hypocenters and picks [e.g. Bondár et al. 2004; Bondár and McLaughlin 2009].  The use of prior information 
helps to mitigate regional location bias and improve outlier identification.  
 
Using absolute arrival-time measurements alone, Bayesloc has proven to be a robust method to determine locations, 
corrections to travel time predictions, and assessments of arrival-time and phase-labeling errors. Because Bayesloc 
includes travel time corrections, location accuracy is predominantly determined by the arrival-time measurement 
precision. Until now, Bayesloc input was restricted to sets of individual arrival-time measurements, which are 
typically made by an analyst picking the onset of a phase arrival. However, the most precise arrival-time 
measurements are based on the correlation of seismic waveforms. The formulation below extends Bayesloc utilize 
direct input of differential times between phases, which is a proven strategy for improving location precision  
(e.g., Shearer, 1997; Waldhauser and Ellsworth, 2000; Zhang and Thurber, 2003; Schaff et al., 2004; Richards et al, 
2006). Differential times factor into the slowness component of the travel time correction model, and differential 
times also influence identification of absolute-time outliers by imposing powerful constraints on relative locations 
and the direct comparison of absolute-time differences (and associated uncertainty) with correlation-based 
measurements.  
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Notation 
We follow the notation of Myers et al. (2007, 2009, and 2011), which we now summarize and extend to differential 
arrival-time data. 
Event-origin parameters are: 

xi = (lati, loni, depthi) = the location of the i-th event. 
oi = the origin-time of the i-th event. 

Seismic signals originating from the events are recorded at multiple stations, and we denote each station by 
sj = (latj, lonj, elevationj) = the location of the j-th station. 

We consider two types of arrival time measurements, absolute arrival times (e.g. analyst picks) and differential 
arrival times (e.g. differences based on waveform correlation).  For absolute times: 

aijk = the k-th picked absolute arrival-time from the i-th event at the j-th station. 
wijk = the phase-label assigned to the aijk arrival time, wijk   ={1,2,…, M}, where M is the number of 

phase names under consideration and each integer corresponds to a seismic phase {Pg, Pn, P, Lg, 
etc.}. 

For differential arrival times: 
dii*jk = the k-th estimated differential arrival-time between the i-th and the i*-th event at the j-th station. 
vii*jk = the phase-label assigned to the dii*jk differential arrival time, vii*jk  . 

The analyst-assigned phase-labels, wijk and vii*jk, are not necessarily correct. As such, we denote  
Wijk = the true phase-name (unknown) of the arrival aijk.  
Vii*jk = the true phase-name (unknown) of the differential arrival dii*jk. 

Phase label error may take two basic forms for a mislabeled phase: the correct phase is either in the phase set  or 
outside of it. To account for phases not in the set  and erroneous arrival data, we use a null phase-label, Wijk = 0 or 
Vii*jk = 0, and define the extended phase label set * = {0,1,2,…, M} (See Myers et al., 2009).  
Given a proposed event location x, let 

Fw(xi, sj) = the model-predicted travel-time of phase w from event location xi to station location sj.  
We further abbreviate the notation by letting Fwij = Fw(xi, sj). The model-predicted travel-time is only an 
approximation to the true (unknown) travel-time of each phase. We therefore explicitly define, 

Tw(xi, sj) = Twij = the corrected travel-time of phase w from event location xi to station location sj. 
We will refer to a subset of parameters by simply dropping one or more subscripts. For example, aij denotes the 
collection (multiple-phases) of the nij arrival-times observed at station j from event i.  
 
The Bayesloc Statistical Model 
The framework is an extension of Myers et al. (2007,2009, 2011) in which the multiple-event location problem is 
decomposed into 3 components. 
 

1) Travel­Time Model. The conditional distribution of the corrected travel‐times (T) given travel‐time 
predictions (F) and collection of travel‐time correction parameters (); 
 

p(T | F, )    (1) 
 

2) Arrival Data Model. The conditional distribution of the arrival‐time data (a) and the differential 
arrival‐time data (d) given the origin times (o), the corrected travel times (T), phase configurations 
(W, V), and a collection of arrival data error parameters (); 
 

p(a | o, T, W, ) p(d | o, T, V, )  (2) 
 

3) Prior Model. A prior distribution for hypocenter parameters, arrival data error parameters, travel‐
time correction parameters, and a prior distribution for phase configurations; 
 

p(x,o) p() p() p() p(W | w) p(V | v) (3) 
 
Note that we assume that absolute arrival-times and errors (a,) are independent from the differential arrival-times 
and errors (d,). Similarly, we assume a prior independence between the phase labels for the two data sources (W 
and V). 
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Using Bayes’ theorem, these three physically related probability models are brought together in a joint posterior 
distribution 
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(4) 
where p(a) and p(d) is the marginal distribution over the arrival data. Eqn 4 allows us to easily combine the 3 
components of the hierarchical model to calculate the conditional probability for locations, travel-times, and phase-
name configurations given a set of arrival data.  
 
Myers et al. (2007, 2009, and 2011) describe the travel-time correction (Eqn 1) and absolute arrival-time data error 
precision (Eqn 2) models in detail. Summarizing, the travel-time correction is given by  

ijwwjjwwijwijwij GFT          (5) 

Where w and w are broad-area, phase-specific shift and scaling parameters, Gij is the event-station geographic-
distance, while the remaining  terms are station and station-phase specific terms that are meant to capture small-
scale travel-time adjustments (see Myers et al., 2011, for details). This particular version of the travel-time 
correction term is well suited for a cluster of events. An extension of the travel-time correction to broader region is 
given in Myers et al. (2011), which adds event-specific corrections.   

Similarly, the treatment of the absolute arrival-time data is unchanged from previous versions of Bayesloc. 
Absolute arrival errors are assumed to be Gaussian distributed with a mean of Awij = oi + Twij , the expected 
(corrected) arrival time for an assumed phase w = Wijk, and variance 

wjwijiwwijwijwijijk AaVar      where,/1)(
   

(6) 

 The differential data is treated similarly. We first note that the expected differential arrival-time, for an 
assumed phase w, is 

)()()( ***** jiijwjwiwijiijwiwijjwii GGFFooAAD  
  

(7) 

That is, the differential data does not provide any information about the broad-area phase-specific shift, w, nor the 
station-specific corrections, j and wj. Hence, the expected differential arrival time is less influenced by errors in 
the assumed travel-time model (F), particularly for two nearby events. Given the expected differential arrival-times, 
we assume that the differential arrival-time residuals are Gaussian distributed with mean zero and a relatively simple 
mode for the variance,   

)exp(   where,/1)( ***** jkiivjviijviijviijkii CDdVar  
  

(8) 

for an assumed phase v, where v are phase-specific precision parameters, Cii*jk is the recorded cross-correlation 
associated with the differential arrival-time dii*jk, and  is an unknown parameter to be estimated. The statistical 
model for the variance can be easily extended to accommodate other information related to the precision of the 
differential arrival-data.       
Finally, the prior distribution for the origin parameters, travel-time correction parameters, phase labels, and the 
precision parameters associated with the absolute arrival-time data are unchanged from Myers et al. (2007 and 
2009). The only addition here is the prior model for the phase labels of differential arrival-time data and the 
precision parameters of the differential arrival-time residuals. The prior model for the phase-labels of differential 
arrival-time is taken to be of the same format as that for the arrival-time data. And similarly, the prior for the 
precision parameters is specified to be vague.     
 

Markov Chain Monte Carlo (MCMC) for Posterior Inference  

MCMC sampling is used to generate realizations from the joint posterior distribution of all multiple-event model 
parameters. MCMC sampling is well established as a method of parameter estimation and uncertainty 
characterization (e.g., Gelman et al., 2004). The sampler used in Bayesloc is described in Myers et al. (2007 and 
2009), with the addition of folding in the likelihood of the differential arrival-time data where applicable. For 
example, when a Metrapolis random-walk sampler is used to propose a new lat-long location for a given event, the 
probability of acceptance reflects both how well the new location fits the absolute arrival-time data and the available 
differential arrival-time data. Because differential time data provide a strong constraint on relative locations, we 
have found it necessary to jointly sample locations of events for which correlated data are available.  Likewise, 
differential time data provide strong constraints on the slowness () component of the travel time adjustment model, 
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requiring joint sampling of that parameter. The joint (correlated) sampling of epicenters and travel time corrections 
is a large change to the Metropolis-Hastings and Gibbs sampling routines (respectively) that were used in previous 
versions of Bayesloc.  
 
Correlation-Based Differential Arrival Times 
We adopt widely used methodologies for computing differential times based on waveform cross correlation. We 
first collect all waveforms for a given station and event cluster. A user-specified, phase-specific bandpass filter is 
applied to each waveform and the phase window is cut from the seismogram based on either analyst picks or a 
theoretical arrival time.  We then compute and save the Fourier transform of each phase-windowed seismogram. 
Complex multiplication in the frequency domain is used to compute auto correlation and cross correlation spectra. 
Cross correlation spectra are inverse transformed and normalized based on the average of the autocorrelation 
amplitudes to produce a normalized, time-domain correlation function. The correlation coefficient is the peak of the 
correlation function and the time shift is the offset of the peak from the center of the correlation function. The time 
shift and the correlation coefficient are refined by fitting a parabolic function to the sample points in the 
neighborhood of the peak in the time-domain correlation function (Deichmann and Garcia-Fernandez, 1992), which 
allows sub-sample precision for the correlation pick.  The difference in time between the arrivals is computed by 
differencing the start time of the phase windows and adding the correlation-based time shift.  This process provides 
input to Bayesloc of the form: eventID_1 eventID_2 station phase time_difference correlation_coefficient. 

In addition to direct input of time differences, we have also implemented the method of optimal adjustments to 
absolute times based on multi-channel cross correlation (Vandecar and Crosson, 1990). Although this method does 
not mitigate pick bias, it does improve the overall pick precision and aids outlier removal prior to the Bayesloc 
inversion. It is our practice to input both the absolute-time and differential-time data into Bayesloc because of both 
the differing constraints on the location system that are provided by each type of data and the increased error for the 
absolute-time data. 

CONCLUSIONS AND RECOMMENDATIONS 
We have extended the statistical formulation of Bayesloc to include differential times between phases. Extension to 
differential time data is expected to improve relative locations in most cases, and it may improve absolute location 
by helping to identify outliers and by improving error characterization for the absolute-time portion of the data set.   

A beta version of the code is close to completion and we expect to have example locations in the near future. The 
beta version features correlated MCMC sampling of event locations and travel time corrections, both of which are 
necessitated by the unique constraints imposed by differential-time data. To generate differential time data sets, we 
have implemented a code to determine differential times based on waveform correlation. The code is integral with 
the LLNL database and allows users to easily compute differential arrival times and correlation coefficients by 
entering a list of event identifiers, stations, and phases (with corresponding bandpass).  
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