HOW SIR JOHN BROWNE TURNED BP AMOCO INTO THE HOTTEST PROSPECT IN THE OIL PATCH.

By Daniel Fisher

On a notoriously violent patch of the Atlantic Ocean north of Scotland and 100 miles west of the Shetland Islands, where winds howl at 60 miles per hour and waves can run 100 feet high, a brutish red vessel rolls in a mounting breeze. The ship, named the Schiehallion after a mountain on the Scottish coast, is the only visible sign of what lies 1,200 feet below: a 500-million-barrel oilfield that BP Amoco has discovered and developed. Equipped with a turntable mechanism at its bow, the floating production platform can swivel a full 360 degrees in treacherous winds while pumping more than 100,000 barrels of oil a day. At current prices Schiehallion is dropping $1 billion a year into BP's bank account.

A decade ago this project would have been technologically and financially absurd. At a cost of $1.2 billion, it still exceeds the reach of all but the biggest oil companies. But for BP Amoco, such deepwater oilfields are the only chance of finding enough crude to replace declining reserves in less remote parts of the world. The company is in an urgent race to control the last giant sources of oil in the waning days of the petroleum era.

For BP Amoco's soft-spoken chief executive, Sir John Browne, deep water offers the prospect of the largest untapped reserves and the lowest-cost means of extraction. It could keep the
TANDEM OPERATION: THE SCH Newman TRAILER OF A
SHUTTLE Tanker WHICH DELIVERS Oil TO THE MAINLAND.

The deepwater basin in the Gulf of Mexico is a key target for the oil industry, with major discoveries being made in recent years. The TANDEM operation involves the use of a trailer to transport oil from the offshore platforms to the mainland. This method is efficient and reduces the need for large tanker vessels, making it an attractive option for oil companies.

The TANDEM operation is led by BP Amoco, which has a significant presence in the Gulf of Mexico. The company is known for its innovative approaches to oil exploration and production. BP Amoco has been involved in numerous deepwater projects, and its experience in the Gulf of Mexico is extensive.

In 2001, BP Amoco completed the Deepwater Horizon platform, which is located in the Mississippi Canyon area of the Gulf of Mexico. The platform is one of the largest of its kind and is capable of producing over 100,000 barrels of oil per day. The success of this project has paved the way for further developments in the deepwater basin.

BP Amoco's efforts in the Gulf of Mexico have not gone unnoticed. The company has been awarded several large contracts in the past decade, allowing it to continue its exploration and production activities. Its commitment to the deepwater basin is evident in the company's ongoing investment in new technologies and infrastructure.

In summary, the TANDEM operation in the Gulf of Mexico is a testament to the ingenuity and resourcefulness of the oil industry. BP Amoco's leadership in the deepwater basin highlights the potential for further discoveries and the continued growth of the oil and gas sector in the Gulf of Mexico.
When BP and its partner built a pipeline to carry the crude 800 miles overland to a tanker depot in Valdez, project costs rose tenfold to $9 billion. Fortunately, "the price of oil went up by a factor of five," Browne says. "Based on $1.95 oil, it would have been pretty tough."

By 1980 Browne had earned a master's in business at Stanford while working for BP in San Francisco. He moved back to the company's base in London and held a series of finance jobs, welding his knowledge of petroleum engineering to the discipline of return on investment. In 1986 he became chief financial officer of BP's 55%-owned Sohio unit (which it later acquired outright). There, Browne began to take a harder look at the promise of deepwater drilling, largely out of necessity: He took charge of exploration and determined that Sohio's oil projects outside of Alaska were a mishmash of expensive properties that would never yield a proper profit.

At the time Jack E. Golden, then a staff geologist and now head of deepwater exploration for BP, had a theory that massive oil deposits lay just beyond the Continental Shelf in the Gulf of Mexico, in waters 1,000 feet deep or more. That was beyond the reach of conventional drilling platforms, which stand on steel legs anchored to the sea floor. But engineers were fast developing new floating platforms and underses equipment to exploit these deeper reserves.

Intrigued, Browne diverted Sohio's entire $50-million-a-year exploration budget to the unproven deep, even though other oil companies were still making good money on the Shelf. "The key was to take a position in advance of the then-fashionable theory," says Browne. "It wasn't a 'bet-the-company' strategy, but it was clear that if it didn't work, our position in North America would be limited to Alaska."

The gamble worked. Rather than punching in wells immediately, BP bought a share of two Shell projects, Ursa and Mars, which turned out to
The Delicate Art of Sucking Up

Extracting crude oil from deposits under 6,000 feet of water is one of the most complex projects around, on a par with building a jet airliner. Hardly surprising that oil executives are looking to the high-tech Boeing 777 as the model for doing things cheaper, faster and better.

In both cases engineers rely on computer-aided design, intricate planning and layers of digital controls to make everything work. To develop a deepwater oil field, geologists first sift through terabytes of data collected by undersea seismic devices. Only the U.S. Navy uses more sophisticated computer techniques.

Next, geologists and petroleum engineers huddle in a “hive” or 3-D imaging room, to identify promising geological formations and plan the trajectory of the well. Using Linux-based servers working in parallel, they generate a computer model of how a drill bit must twist and turn to hit one or more formations as much as 30,000 feet below the sea floor.

With plans in hand the oil company rents a drill ship at $250,000 a day to punch in exploratory wells. The 700-foot drill ship is equipped with computer-controlled thrusters, or “swelling” propellers, that can keep it in position in any kind of inclement weather, up to a hurricane.

To drill the well, engineers have devised an ingenious system of hollow “riser pipe” that creates a hermetic seal between the well opening on the sea floor and the ship, swaying 8,000 feet above. Inside the riser pipe a space about 10 inches in diameter, large enough to hold the spinning drill pipe and bit as well as to allow the return flow of drilling fluid. The whole construction is similar to an oil well on land, with the weight of the drilling fluid designed to contain the geological pressures deep in the ground.

But to protect against uncontrolled releases, or blowouts, a valve assembly must be lowered to the sea floor. Scuba divers can’t work at 8,000 feet, where the water temperature is close to freezing and pressure exceeds 2,800 pounds per square inch. So everything must be done with remote-controlled robots — equipped with cameras and powerful lights — that install the blowout preventers, submersible pumps and other devices to manage the flow of oil and water on the sea floor.

Once the wells are completed, often over 50 square miles or more of the ocean bottom, they are connected by flexible hoses to a floating production platform on the surface. Some, called spars, resemble giant fishing boats 700 feet long, and are anchored to the bottom with massive chains. The $500 million spar takes in the natural gas, crude and water flowing from the wells and separates them with filters and centrifugal spinners, offloading the oil and gas to undersea pipelines or a waiting tanker.

To manage the field over its 20-year life span oil companies borrowed technology from the aerospace and telecommunication industries. Fiber optic links feed back constant temperature and pressure data, while sensors the size of a dime determine if water has infiltrated the surrounding rock, threatening oil production. Technology barrowed from a satellite manufacturer yields valves that can operate reliably for years at pressures as high as 18,000 pounds per square inch, so reservoir managers can direct the flow of oil and water inside the formations.

The ultimate purpose of all this technology is to protect an asset that, at a cost of more than $1 billion, must produce every last drop of oil it can.

—D.F.

Hold some 500 million barrels apiece, having proved Golden’s hunch correct, the time leapfrogged Shell and its other competitors and went farther out into the Gulf, into zones where conventional seismic analysis couldn’t actually detect whether there was oil in the ground.

The risk was higher, because only a $50 million well would determine success. But by going farther, BP found it could assemble large tracts of 9-square-mile blocks at the minimum lease bid of $150,000, compared with current prices as high as $20 million.

BP hit pay dirt in 1995 with its Neptune well, 6,200 feet under in the Gulf of Mexico. Then in 1999 BP found Crazy Horse, with an estimated 1.5 billion barrels lying 6,000 feet below, a field that is expected to produce wells tapping more than 20,000 barrels a day by 2005, 20 times the average in shallower portions of the Gulf. Some analysts think BP’s Mad Dog, Holstein and Atlantis fields hold another 2 billion barrels or more.

Now Shell is rapidly falling behind BP in water depths exceeding 2,000 feet. While Shell is widely believed to control more acreage worldwide, BP holds far more of the estimated future reserves in
Deepwater fields require $1 billion or more to develop—many times the cost of onshore assets. But engineered right, deep water yields higher returns than many onshore projects because the fields are compact and easily drained. "Anytime you find a lot of oil in a small place, the economics are fantastic," says Douglas Terreson, managing director at Morgan Stanley Dean Witter in Houston. "The best example is Saudi Arabia."

But Saudi Arabia has long been off-limits to Westerners. So have other low-cost areas such as Mexico and Iran, where BP got its start as Anglo-Persian Oil Co, in 1908 with the first commercial oil strike in the Middle East. To replace earlier fields, oil companies moved offshore, where continental-shelf rivers like the Mississippi and the Congo have been depositing petroleum-forming sediments for millions of years.

BP is also the only company with interests in all three of the deepwater tracts where oil has been found near Angola. Off the coast of Brazil, it has leased 15,000 square miles—as much acreage as its vast holdings in the North Sea—and hopes to extract billions of barrels of crude. With the new fields, BP aims to boost production 6% annually over the next two years, double the rate ExxonMobil and Shell hope to achieve.

Those new reserves are proving to be pretty cheap. By getting in early and controlling the projects itself, BP can bring in the oil for no more than $6 a barrel, company officials say, including exploration, production and transportation costs. That drops below $5 in the Gulf of Mexico. So even if oil prices drop to $10 a barrel from their current $30, BP is left with a gross profit of $10 a barrel.

Deepwater oil "improves the financial characteristics of the whole business," says Golden. BP's production costs are just 18% of revenue, versus 23% at ExxonMobil and 19% at Shell, says Prudential Securities analyst Michael Mayer. That lead should only widen. BP's return on investment in exploration and production could increase to 18.6% next year from 13.6% in 1999, mostly due to cheaper reserves, says Morgan Stanley's Terreson. "One of the things BP hasn't gotten credit for is how successful they've..."
THE DEEPWATER WORLD, ACCORDING TO BP AMOCO

been with the drill bit," he says.

No one knows how much oil is left to be found in the Gulf of Mexico. So far the discoveries are tracking the production curve of the Continental Shelf, where 40 billion barrels have been located since drilling began in the late 1940s. With 10 billion barrels discovered in waters deeper than 3,500 feet thus far, that means another 30 billion barrels may be hiding out there. "Three times since I joined BP there has been a terrific buzz about the company: the North Sea, Prudhoe Bay—and now this," says Adrian Clark, a technical expert in the upstream group, who joined in 1970. "There's the sense we're sitting on something huge."

Roger Anderson, a geophysicist and director of the Energy Research Center at Columbia University's Lamont-Doherty Earth Observatory, says the discoveries may have only begun. Below the sands BP is drilling now, he says, lies an extension of the massive Poza Rica, an older carbonate formation that extends into the water and was discovered in Mexico at the turn of the century. "You want to know the size of it, look at PEMEX's reserves, not BP's," he says. The state-owned Mexican oil company claims reserves of 25 billion barrels; BP pegs its oil supply at 14 billion barrels.

Similarly massive fields are believed to be waiting off the coasts of Brazil and Angola. As in the Gulf, the oil deposits were created during a period of flourishing plant life 80 million years ago, when rivers draining Africa and South America dumped sediments into the narrow and shallow sea then separating the two continents. Poor water circulation meant the organic material was covered before it could decompose, and it eventually was transformed into oil and natural gas.

Getting at the oil can be tricky, and not just because it lies under as much as 30,000 feet of water and rock. In the Gulf most of the oil is hidden under thick layers of salt that blur conventional seismic images, requiring fancy supercomputer-driven images to decipher what is present (see box, p. 114). Once oil is found, BP is extremely careful in planning how to extract it. It has set up an assembly line rig builders, engineers and computer scientists to bring its deepwater projects online quickly and cheaply.

Before a major well is drilled or a platform is built, key employees gather in the "hive," a $500,000 room for viewing 3-D images generated by a Silicon Graphics computer. The hive allows collaboration by geologists, engineers and drillers, who used to work in isolation. They often walk out of a two-hour meeting with a drilling plan, a process that once took weeks. BP saved enough on one well to buy 20 hives to equip all of its major offices. The goal, Browne says, is to get as much upfront cost cut as possible to achieve an annual return on investment of at least 15%, assuming $16-a-barrel oil.

"Every business is a margin business—you always have to balance unit production against unit costs," Browne lectures. "If you ever forget that, you will build the greatest projects, get the greatest production—and get no profit."

It was Browne's familiarity with the economics of billion-dollar projects that landed him on the board of Intel, where he reviews similar expenditures in the high-tech realm. Intel Chairman Andy Grove, who recruited Browne as a director in 1997, says the BP chief "asks solid questions" in daylong meetings Browne often attends via transatlantic videoconference from his office in London. "We understand each other well," Grove says. "True for him, true for us."

Browne is trying to keep BP a few paces ahead in the energy race, in part by developing nonpetroleum fuel sources such as hydrogen-powered fuel cells and solar panels for the day the world finally runs out of fossil fuel. BP's new logo, a green sun, and its Web site, populated by what look like refugees from a Benetton ad, help reinforce the image of the company as its environment's best friend. But for the foreseeable future, Browne will be judged on how much oil he can find—and at what price.

Browne, who was knighted in 1998, is up for the challenge. "In the end, it's what we prove we can do and not what we say we can do," he says, "and so far the record's been okay."