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Abstract

A description of the multiple-taper method for spectral estimation and
harmonic analysis is given. This method is particularly suitable for time
series of short duration. Cross-spectral analysis using the multiple-taper
method is treated and the jackknife method used to obtain confidence
limits for spectra, coherences, and frequencies of harmonic components. A
program written to implement the multiple-taper method is described.

1 Background

This report describes one of the latest methods developed for spectral estimation
and time series analysis. It is not yet widely used, in part because it is still
under development and the tendency of researchers to use “standard” tools when
analysing their data. Also, this method is not incorporated in commercially
available software packages for time series analysis. Its features seem, however,
promising enough to encourage the development of the necessary software.

My work in the area of spectral analysis started in late 1992 when I was work-
ing for Sigfias J. Johnsen at the Geophysics Laboratory in Copenhagen. Sigfus’s
interest in the method presented here had been aroused by his French colleagues,
who were analysing data from the Vostok ice-core (Yiou et al., 1991). When I
returned to Iceland, analysis of total ozone data from Reykjavik resumed. Pre-
vious studies had concentrated on parametric modelling of the data (Bjarnason
et al., 1992; Bjarnason et al., 1993). The Dobson network of total ozone spec-
trophotometers has only been operating for roughly three decades, or since the
international geophysics year in 1957. Therefore, time series of total ozone are
typically quite short after the necessary averaging has been done (usually on a



monthly basis). Also, the data are often discontinuous, especially at high lat-
itudes where measuring during the wintertime is difficult. This situation has
put the main emphasis in analysis of ozone data on parametric modelling to de-
termine trends and the influences of natural variations (e.g. the quasi biennial
oscillation in equatorial zonal winds and the 11 year solar cycle) on total ozone.
Spectral analysis of ozone and related data is on the other hand very limited (see
Zerefos et al. 1992; Salby & Shea, 1991). The method described below seems
quite adequate to expand the analysis of the ozone data into the frequency do-
main. The results of this analysis will be reported elsewhere (Rognvaldsson &
Bjarnason, 1993). We have also applied the multiple-taper method to analyze
ice-core data from Greenland, quantum oscillations in the properties of metals
(the de Haas—van Alphen effect), and time series of characteristics of a ferro-alloy
plant.

2 Introduction

The aim of this paper is to give a short (and hopefully comprehensive) overview
of the multiple-taper method for spectral estimation. The basis for the multiple-
taper method (MTM) was first given by Thomson (1982). It has proved to be a
powerful tool in spectral estimation (see, e.g. Kuo et al., 1990; Park et al., 1987;
Lindberg & Park, 1987; Thomson, 1990a; Thomson 1990b; Yiou et al., 1991),
especially for the analysis of short time series. By a short time series we mean
that the data can not be split up into independent series.

Section 3 is a brief overview of the properties of stationary processes and the
fundamentals of spectrum estimation. Section 4 describes the basic structure
of the MTM and estimation of power spectral density. In section 5, harmonic
analysis and the estimation of statistical significance of harmonic components is
treated. Finally, the last section comments on cross-spectral analysis with the
MTM, regarding both coherence and phase. Appendix A is a detailed description
of the program written in connection with this work and problems related to
coding of the MTM. Appendix B gives a brief description of the jackknifing
method for inferring a sample’s statistical properties without the use of explicit
probability distributions and comments are given on various statistical terms.

3 Spectral analysis

It is well known that almost all periodic functions can be represented as Fourier se-
ries, and non-periodic, absolutly integrable functions as Fourier integrals (Priest-
ley, 1981). Functions in these classes can thus be thought of as sums, or integrals,
of sin- and cosine components and it is natural to think of each frequency inter-
val (f, f+df) as contributing a small fraction to the total “power” or “energy”.
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Consider an absolutly integrable function X (¢) € L'(—o0, x0), i.e.

/Oo X (1)]dt < oo (1)

— 00

The total energy is then defined as

/ X2(1)dt (2)
and is finite. Hence, the spectral properties of X (#) are described in terms of its
energy density distribution. The contribution to the total energy of components
with frequencies between f and f + df is |G(f)|*df where G(f) is the Fourier
transform of X (?),

G(f) = /_ Z X (1) exp(—i2r ft)dt. (3)

In the case of periodic functions the total energy is infinite and the spectral
properties are described in terms of the distribution of power (i.e. energy per
unit time) defined by
. ST XP(dt
pm (4)
The contribution to total power of each of the discrete frequency components is
given by the square of the corresponding amplitude.

When analysing a stationary random process, an infinite number of realiza-
tions is possible. The spectral properties are thus only meaningful in the average
sense. A further complication is that stationary random processes are neither
periodic nor absolutly integrable. Hence, the above representation does not en-
compass these “functions” and the more general Cramér representation is needed.

In what followes we shall be considering a time series x(¢) and N contigu-
ous observations of it, x(0),z(1),...,2(N — 1), spaced at unit time intervals.
Frequency in the spectral representation lies in the range (—%, %] and angular
frequency w = 2r f € (—m,x]. Since we shall only be dealing with real processes
later on, the actual range of f will be [0, %] with the negative part of the spectrum
given by the complex conjugate of its positive part.

Initially, we assume that the random process under study is wide sense sta-
tionary, i.e. its statistics are invariant under changes of time origin. In theoretical
variance calculations it is also assumed that the process is Gaussian in the fre-
quency domain, so that estimates of power spectra are the sums of squares of
normally distributed variates and hence distributed as y* (Thomson & Chave,
1990, give the probability density function of such a spectrum estimate). The
spectral (or Cramér) representation of a stationary process is given by a gener-
alized Fourier transform,

1/2 .
o) = [ expli2nfrdz()), (5)



for all t where dZ( f) is an orthogonal increment process (Priestley, 1981, see also
appendix B). The integral in (5) is a stochastic integral and hence only defined
in the mean-square sense (see e.g. Priestley, 1981, ch. 3). We are particularly
interested in the second moment of the process,

E{ldZ(/)I"} = S(f)df. (6)

which defines its spectral density function, S(f). In addition, dZ is uncorrelated
at different frequencies and

E{dZ(£)dZ"(g); = S(F)o(f — g)d[fdg. (7)

Here, E denotes the expectation operator, * denotes complex conjugation and
0 is the Dirac delta function. So far we have limited the discussion to zero-
mean processes, i.e. E{dZ(f)} = 0, free of any periodic components. For many
problems, harmonic oscillations are present in the time series being studied, and
the underlying process is better described by the extended, or Munk-Hasselman
(Munk & Hasselman, 1964), representation where the deterministic component
of the process (i.e. its first moment) is given explicitly by

B{AZ(f)} = 3 wio(f — £:)dF. (8)

where the f;’s are the frequencies of the periodic components and p; their am-
plitudes. The continuous, or background, part of the spectrum is given by the
second central moment of dZ(f)

Se(f)df = B{dZ(f) - B{dZ(/)}I}, (9)

and describes the non-deterministic component of the process. Processes of this
kind are known as centered or conditionally stationary and are said to have mixed
spectra.

The distinction between the properties of first and second central moments is
very important. First moments correspond to what is termed harmonic analysis,
i.e. the study of periodic components. Typically, a process will contain a few
such components, which can be described by their amplitude, frequency and
phase (sometimes a frequency drift rate is also included). These parameters
can be estimated using standard maximum-likelihood methods. The accuracy
one can obtain in estimating frequencies of line components is a function of the
local signal to noise ratio, defined as the ratio of power in the first moment to
power in the second moment at each frequency. This means that in some cases
it is possible to achieve resolution of the order of the Rayleigh resolution, 1/N,
for the line spectrum (and even do better than that) while typically the useful
resolution for the continuum is between 2/N and 50/N. When estimating the
continuous spectrum, one is estimating a function of frequency. Its properties



set more stringent limits on the resolution that can be obtained (see Thomson,
1990a, and Thomson, 1990b, for details).

To study the statistical properties of the process dZ(f) we start by taking
the discrete Fourier transform of the available data

N-1
i(f) = a(t)exp(—i2x ft), (10)
t=0
and combine this with the spectral representation (5) to obtain
. 1/2
#f) = / Kn(f — v)dZ(v), (11)

—-1/2

where the kernel (Dirichlet-kernel) is given by

5 — sin N«
Kn(f) = Zj exp(—127 ft) = exp [_mng 1] Smliff‘ (12)

Equation (11) represents the fundamental equation of spectrum estimation and
can be treated as a Fredholm integral equation of the first kind. Although it
does not have a unique solution, approximate solutions will be constructed in
section 4 and used to estimate the spectral density function. Note that (f) is
a sufficient statistic since (10) may be inverse transformed to recover the data.
This is however not the case for |#(f)|?, i.e. the phase information, although not
often quoted, is essential when reconstructing the time series, e.g. when removing
harmonic components (see section 5).

The fundamental idea of the MTM 1is to obtain a set of uncorrelated spectrum
estimates from a single time series by multiplying it in turn by each member of
a set of orthogonal data tapers. The tapered series is then Fourier transformed,
and finally the spectrum estimates so obtained are combined into a single one.
The orthogonality of the windows, which are the Fourier transforms of the tapers,
ensures that the spectrum estimates are uncorrelated under the assumption that
the spectrum is constant over the bandwidth of the windows. This bandwidth
is the only ad hoc parameter in the MTM, but methods for detecting unresolved
structure are currently being developed to help choosing the appropriate band-

width in each case (Thomson, 1990b).

4 Spectrum estimation as an inverse problem

It should be kept in mind, that in spectrum estimation one is interested in the
statistical properties of the process, dZ(f), generating the time series, (). Since
the fundamental equation (11) is the frequency domain expression for the projec-
tion of an infinite stationary sequence generated by dZ(f) onto the finite sample,
it does not have an inverse; hence, it is impossible to obtain exact or unique



solutions. As a result we must proceed by constructing approximate solutions
which have statistical properties that, in some sense, resemble those of dZ(f),
rather than resorting to studies of the statistical properties of the finite sample

{z(1)}5"

4.1 The Slepian functions

The key to the construction of such approximate solutions are the Slepian or
discrete prolate spheroidal wave functions, whose properties are described by
Slepian (1978) and Thomson (1990b, appendices A & B). These functions are the
Fourier transforms of the so called discrete prolate spheroidal sequences (DPSS),
or Slepian sequences, and it is instructive to see how one can construct those.

It is well known that multiplying a time series with a suitable taper before
Fourier transforming gives superior results to those obtained by applying the
Fourier transform directly. The primary purpose of data tapering is to reduce
spectral leakage, i.e. minimize the energy contribution to a spectral component
at frequency f from distant frequencies. The finite size of the sample at hand
naturally sets some limits on the distance between mutually uncontaminated
spectral components and thus controls the bandwidth (2W) of the window, or
filter.

Consider a harmonic signal with angular frequency @ and amplitude g, x(t) =
pet. (Park et al., 1987, and Lindberg & Park, 1987, consider a decaying signal,
x(t) = pel™=2 the discussion below parallels theirs where we have set a =
0.) A taper, v(t), that maximizes the energy content of the tapered signal,
{z(t)v(1)}5", inside the interval (& —Q, O+ Q) where Q = 27 W, relative to the
total energy must maximize the functional

[ el P

F == : (13)
/ l2(w)[2dw
where z(w) is the discrete Fourier transform of {z(#)v(#)}g:
N-1
z(w) = p > exp(—iwt)exp(iwt)v(t). (14)
t=0

Since the time series is limited to [0, N — 1] it is impossible to confine the energy
of its Fourier transform completely in (0 — Q,@ + Q) and hence F will always be
less than unity.

Expanding the numerator of (13) gives

/wzﬂ |z(w)]Pdw = |,M|2/j; dw Z__: exp(—iwt)v(t) x Z__: exp(—iws)v(s)

—



t %v(s) (15)

and by Parseval’s theorem the denominator is

. N-1
| lat)Pdew = 2mlu Y o). (16)
- t=0
Define the vector v = (v(0),v(1),...,v(N — 1)), and the matrix A with elements
Almzw; [Lm=0,1,...,N —1. (17)
7(l—m)

(Note that A is a symmetric Toeplitz matrix and thus has only N distinct ele-
ments.) Equation (13) can now be written in the compact form

vi.A v

vT.v

Flv) = 7 (18)
where T denotes transpose. To find the taper that maximizes the functional F
set the variation of F with respect to v equal to zero

O0F(vih) = i.7-"(V +eh)] =0 (19)

de —o
for all N-vectors h. This leads to the eigenvalue problem
A-v=)v. (20)

This equation has N eigenvalues and the corresponding eigenvectors are the dis-
crete prolate spheroidal sequences which we set out to find. The DPSS are ordered
by their eigenvalues, 1 > Ao, A1,..., Ay_1. The first K = [2NW| (|-| denoting
the least integer or floor function) eigenvalues are exponentially close to 1. Hence,
only the corresponding Slepian sequences can be used as data tapers since their
spectral leakage, which is proportional to 1 — A, increases rapidly after that.
Figure 1 shows the first 5 data tapers for a time-bandwidth product of 4 and the
corresponding windows (Fourier transforms) are shown in figure 2. The tapers
are designed for a 100 point series and hence the bandwidth of the windows is
2W =8/100 and a sharp cut-off is seen at f =W = 4/100.

There is a simpler and numerically more stable way to compute the Slepian
sequences, first described by Slepian (1978) (see also Durrani & Chapman 1984;
Thomson, 1990b). It is based upon a trigonometric series expansion of the solu-
tion to the differential equation for the discrete spheroidal wave functions. Using
this expansion, the differential equation can be written as a second order differ-
ence equation for the successive terms in the series. In matrix form, this equation
becomes

oc-v=0v (21)
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Figure 1: Discrete prolate spheroidal tapers for N = 100, W = 0.04.

where the matrix o is tridiagonal and doubly symmetric with diagonal elements
oii = (3(N =1)—i)’cos(27W) i=0,...,N—1 (22)

and off-diagonal elements
Ciic1 =01, =3i(N—1) i=1,...,N—1. (23)

One proceeds by finding the eigenvalues, {#}Y,, of &, using a standard routine
for tridiagonal matrices (e.g. tgli from Press et al., 1988) and then finding the
Slepian sequences by recursively solving

(0’ — (gk:[) Vi = 0 (24)

for each of the K highest eigenvalues of or. HereIis the N x N identity matrix. We
start by choosing v(0) = 1 and set vg(—1) = 0. The series are then normalized
to have v} - v; = 1 and the sign chosen such that even series are positive at the
center of the range and odd sequences have positive central slope. The exact sign
convention varies somewhat in the literature (compare e.g. Fig. 1 in Thomson,

1982, and Figure 1 in Park et al., 1987) but here we follow Thomson (1990b).
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Figure 2: Prolate windows corresponding to the tapers in figure 1.

Thomson (1990b) gives a formula for evaluating the eigenvalues corresponding
to the Slepian functions,

w
[ IViniRag
A = 0

1/2

IR

where the Slepian functions, Vi(f), are the Fourier transforms of the Slepian

sequences, {vg(t) 1y,

(25)

N-—

Vi(f) = D vilt) exp(—i27 ft). (26)

i=

—

They are also solutions of the integral equation

NV = [ (] =)V (27)

where the kernel is again given by (12). Note that the phase of the functions
Vi(f) is different from the original Slepian functions, Ug(f), which are used in
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Thomson (1982),

Vilf) = —exp [ -ionf

€k

N -1

Ju=p). (28)

where €, = 1 for k even and ¢; = ¢ for £ odd. This is done to agree with common
definitions of the discrete Fourier transform. Also, to be precise, one would need
to make the dependence of the vy’s (and Ay’s, Vi’s etc.) on N and W clear by
writing v (t; N, W) etc. This notation will be suppressed here for simplicity and
the reader asked to bear this dependence in mind.

The functions {Vi(f)}ioy, which are the eigenfunctions of Ky(f — v), are
doubly orthogonal, i.e. they are orthogonal over (—W, W),

[ VIS = M (29)

and orthonormal over the entire frequency range (—%, %),

1/2
L GOV (s = 8 (30)
When combined, these two orthogonality properties give the eigenvalue formula
(25). Also note that similar orthogonality relations hold for the DPSS, i.e. they
are orthogonal on (—o0, c0) and orthonormal on [0, N — 1] (Thomson, 1982). The
DPSS are optimal tapers in the sense that of all sets of K orthonormal sequences
of duration N, their Fourier transforms (i.e. the Slepian functions) have the
maximum energy concentration in the bandwidth (=W, W).

4.2 Construction of the spectrum estimate

The Slepian functions introduced above form a complete set in the class of ban-
dlimited functions, i.e. functions with finite power and whose spectrum vanishes
outside some finite interval (—o, o) (Papoulis, 1984). This means that all ban-
dlimited functions can be expanded in the Slepian basis functions. Hence, the
observable portion of dZ can be assumed to have the expansion

AZ(f =) = X Xl HVE () 31)

for |v| < W (Thomson 1990a). By the assumed stationarity, the part of d7 in
the local domain, (f — W, f + W), is uncorrelated with dZ in the rest of the
frequency domain. Multiplying (31) with V;(v) and integrating over (=W, W)
gives

Xulf) = = [ Vnaz(s - v (32)
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where we have used the orthogonality property, equation (29), and normalized
the coefficients, Xj(f), in such a way that E{|X(f)|*} = ¢* if the spectrum S(f)
is white with variance o®. Although unobservable, the X;(f)’s are of considerable
analytic interest since they are the expansion coefficients that would be obtained
if the entire time series were passed through an ideal bandpass filter, from f— W
to f+ W, before truncating it to the finite sample (Thomson, 1982).

Using the above assumption, (31), together with the fundamental equation,
(11), and the orthonormality property of the tapers, v(?), the expansion or
eigencoefficients for the finite time series can be calculated:

nih) = [ vwazir v

—-1/2
N-—

= Z exp(—12x ft)vr(t)x(1), (33)

i=

—

giving an estimate of the coefficients Xj(f). We shall see later how one can
minimize the mean square error between Xj(f) and z,(f). In addition to the
change in integration interval, a factor of 1/y/)}, is included in (32) to preserve the
orthonormality on the inner interval (—W, W) (details are in Thomson, 1990b).

Note that the estimated expansion coefficients, x4 ( f), are obtained by Fourier
transforming the tapered time series. In pratice, the tapered series is zero padded
to length Nppp = 2™ ie. x(t)isset to 0 fort = N,..., Ngpp — 1. The number m
depends on the interpolation wanted, typically 2N < Nppr < 10N. The Fourier
transforms are then calculated on a mesh from f = 0 to f = 1/2 (Nyquist
frequency) with Af = 1/2Nppy using a standard FFT routine (e.g. realft from
Press et al., 1988). The absolute squares of the expansion coefficients,

Sk(f) = |zr(£)I%, (34)

are individually direct spectrum estimates and the set {Sk(f) KL can be used to

estimate the statistical properties of the spectrum which is formed by combining
this set of eigenspectra into a single conglomeration.

As mentioned earlier, only the first K = [2NW | Slepian functions have low
spectral leakage and hence only those (or fewer) are used when constructing the
spectrum estimate. Of all functions which are the Fourier transform of an index
limited sequence, the function V4(f) has the greatest fractional energy concentra-
tion in (=W, W) and hence using only that function is comparable to standard
filtering techniques where one filter is used. However, by combining the first
K expansion coefficients corresponding to the highest eigenvalues, one obtains a
spectrum estimate with typically 2K degrees of freedom instead of 2 when using
conventional methods. To see how this is possible consider a crude multiple-
window spectrum estimate given by the average of the first K eigenspectra,

S ==X S, (3)



and temporarily restrict the discussion to the continuous part of the spectrum.
The second moment, or covariance, of the eigencoefficients is given by

B = o[ [0 voviea - guze - o}

1/2J-1/2
1/2

= [ Vil = OSIOVE( = Odc. (36)

~1/2
where we have used (7) to perform the integration. From this and the orthogonal-

ity of the prolate functions it is clear that if the spectrum, S(f), is reasonably flat
within (f — W, f + W) the eigencoefficients at each frequency are uncorrelated,

E{z;(f)ar(f)} = S(f)bjk. (37)
Considerable correlation can however arise if the spectrum is highly variable in
this region. Assuming a locally flat spectrum and a Gaussian process dZ(f),
the estimate (35) is a sum of K squares of Gaussian variables at each frequency.
Hence, each term in the sum is distributed as chi-square with 2 degrees of freedom,
&2, and contributes 2 degrees of freedom to the spectrum estimate.

The use of the first K < [2NW ]| windowed estimates thus results in a spec-
trum estimate with 2K degrees of freedom, without reducing the resolution, W.
This is in contrast with earlier methods where convolution smoothers have been
essential to give consistent spectrum estimates, with the cost of poorer resolution.
Typically W is chosen between 1/N and 25/N with a time-bandwidth product,
NW _ of 4 or 5 being a common starting point. With W = 4/N or 5/N, K is
usually taken conservatively as 6 or 8, giving estimates with 12 or 16 degrees of
freedom respectively. This range of W is chosen in accordance with the achievable
resolution for the continuum (cf. the discussion in section 3).

In practice, a more complicated combination of the eigenspectra than the
arithmetic mean (35) is used. Thomson (1982, §V) describes a data adaptive
weighting scheme which gives an optimal solution in the sense that it minimizes
the mean square error between the estimated eigencoefficients, x4(f), and the
“exact” ones, Xj(f). Qualitatively, it can be envisaged that since the spectral
leakage of the prolate filters Vi (f) increases with &, and the bias characteristics of
the corresponding eigenspectra degrade, the higher order eigenspectra will have
to be downweighted relative to the lower order ones, especially in regions where
the spectrum is low. This is done by introducing a sequence of weight functions,
dip(f), that modify the corresponding eigencoefficients. We thus consider the
difference

XD = Denl) = = [ VOIZT = O =) [ @Az -0

- (ﬁ - dk<f>) [ vz -0
— dul(f) F Vi(QAZ(f = ) (3%)

14



where we have collected regions of integration and the cut-integral is defined by

1/2 W
= -/ . (39)

12 J-w
The error consists of two terms which both are integrals with respect to the
random process dZ but the first one is over (=W, W) while the latter is an
integral over the remainder of the principal domain. This means that the two
terms are independent and their mean square error is hence the sum of their

squares. Assuming that the spectrum, S(f), varies slowly over the local domain,
the square of the first term is well approximated by

E {‘/_V:Vmodzu ~of

The square of the second integral in (38) is termed broad band bias by Thomson
(1982) and denoted by Bi(f). The integral of its average value over all frequencies
is given by

} ~ \S(f). (40)

[ nimmar = o2 - (a1)

where o? is the process variance

o? = / g (42)

1/2

In the mtm-program described in appendix A, an initial estimate of the variance,
&%, is obtained from the variance of the data. After line components have been
removed (see section 5), the variance is estimated by integrating the background
spectral density function with a discrete version of (42). It should be noted that
the spectrum estimates considered here do not conserve power rigorously so that
Parseval’s theorem is only satisfied approximately in expected value (Thomson,
1990b).

Combining these two integrals and minimizing the mean square error with
respect to di(f) gives the approximate optimum weights

VAS(S)
ARS(f) + E{Bi ()}

di(f) = (43)

the corresponding average of the spectral density function being

K-1

Z | (f)[*Se(f)
S(f) = == : (44)
Z_: |di(f)]?
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Since the (obviously unknown) values of the spectrum appear in the expression
for the weight functions, both directly and implicitly through the dependence of
the estimate of the broad band bias, we replace S(f) with the estimate S(f)
The formula for di(f), (43), and equation (44) are then used recursively until
convergence is achieved. The criterion used in the program to stop this iteration
is that

JW0 _ glet1)

| < 001 (45)
k

k

The average of the first two eigenspectra is used as an initial estimate for S(f)
and the resulting spectrum estimate is a solution of the equation

(S = Si(f) _
§ NGEY G (46)

where Bk(f) is an estimate of the broad band bias. Currently, this is approxi-
mated by its average value 6%(1 — A¢) in the program. (Thomson (1982) gives
some further comments on refinements.) The phase corresponding to the spec-
trum estimate S is obtained from the phase of the weighted coefficients,

K-1

> di(f)a
8(f) = 7=

(47)

K-1 ‘ '

; de(f)zr(f)

In the program, the phase spectrum ¢(f) of the continuum is calculated, and
phases of significant harmonic components are also quoted (see section 5 and
appendix A).

A useful by-product of the above estimation procedure is

K-1

f)=2 Z_: | (f)I%, (48)

which gives the approximate degrees of freedom for the estimate S(f) as a func-
tion of frequency. This provides a way to select a proper bandwidth for the
problem at hand since if the average of v(f) is significantly less than 2K then
either W is too small or additional prewhitening of the data is needed. The exact
meaning of “significantly” is not quite clear and a more rigorous way of selecting
the proper bandwidth is to test for unresolved structure in the local domain.
Inferences about this can be obtained from quadratic inverse theory (Thomson,
1990b).

The jackknifing method, outlined in appendix B, is used to obtain confidence
intervals on the spectrum estimate. This is done by jackknifing the logarithm of

16



the spectrum. First we calculate the delete-one values,

K-1 K-1

log Spy = log | S [di(£)*Se(f Z ()], (49)
oy o
and form their average
R 1 K-1 R
log Spy = 74 ]Z:; log S (50)

The jackknife estimate of the variance of log S is then

5 = var(log 9)
[X -1 K-1

- Z (log Sy —log 5 ) (51)

and because of the logarithmic transformation, the ratio (log gm — log Sm)/& is
nearly distributed as tx_q, where ¢ denotes Student’s ¢-distribution. Hence, the
double-sided 1 — « confidence interval for the power spectrum is (Thomson &

Chave, 1990)

Sexp (—tK_l (1 — %) &) <5< Sexp (tK_l (1 — %) &) ) (52)

The jackknife bias estimate on log S is also calculated in the program. According
to Thomson (1990b) it is given by

log B = (K — 1)(log 5y — log ). (53)

This bias estimate can be compared with theoretical calculations based on Gaus-
sian assumptions (see appendix A). Note that in the last few formulas the fre-
quency dependence has been dropped for clarity.

In this section, the main emphasis has been on estimating the continuous
spectrum or the spectral density function, S.(f). As mentioned in section 3, the
first moment of the process describes its deterministic part and hence is of great
importance if harmonic oscillations are present in the data.

5 Harmonic analysis

It is quite common in spectral analysis to have spectra consisting of sharp line
components embedded in continuous spectra. The lines can be due to some pe-
riodic forcing, as is the case with the the annual variation of ozone, or be an
intrinsic property of the system as in the case of dHvA oscillations in the prop-
erties of the Fermi surfaces of metals. To model such mixed spectra we assume
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that the process has a non-zero mean value function consisting of a number of
sinusoids at various frequencies (see equation (8)). The MTM allowes one to esti-
mate the amplitude of the line components and provides an analysis-of-variance
test for their significance.

Evaluating (33) gives

Blaw()} = p(—i2m ft)vr(t)E{x (1)}

2 ”Mz

= Z_: exp(—127 ft)vg(t ZN; exp(127 f;t)
= Z,M]Vk f f] (54)

where we have used equations (5), (8) and (26). We found earlier that if the
continuous spectrum, S.(f), does not vary too rapidly over (f — W, f + W), the
different eigencoefficients were approximately uncorrelated (see equation (37)).
Thus if the line frequencies were known, one could find the amplitudes by mini-
mizing

fZ;IMf) = 2w Vilf = F)I% (55)

If the different line frequencies are separated by at least W, this minimization
results in a matrix which is strongly diagonal by virtue of the orthogonality of
the Slepian functions and their energy concentration. In this case the coefficients
p; can be estimated independently of each other. Under this assumption it is
therefore sufficient to consider the simple case of a single, isolated line at frequency
fo. Since E{zr(fo)} = 1oVi(0) one may estimate po given fo by ordinary least-
squares. The presence of this line is then tested with a generalized likelihood
ratio test,

max —2UXH) (56)

L{X}Hp=0)

that, under a Gaussian assumption, becomes the variance ratio test (Thomson,
1990b).

To estimate the amplitude of a single line at frequency fo we minimize the
mean square error between the observed eigencoefficients and their expected val-

ues
K-1

M= o) = fVilf = fo)l? (57)
k=0
at fo, i.e. solve (OIM/0uy)|s=5, = 0. This results in the simple linear regression
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estimate
K-1

ka J?k fo

0= le

S O

The significance of this estimate may be tested by using a standard F'-test. Tak-
ing the ratio of the variance explained by the line to the unexplained variance,
normalized by their respective degrees of freedom, one obtains

N

(58)

(K — )ilf |221|w
P = —s (59)
uzm (V)P

where the constant factors (2K — 1/) and v provide proper scaling for F' with v
and 2K — v degrees of freedom. For testing at a known frequency v = 2 but if
the frequency is estimated as well v = 3 (Thomson, 1990b).

From the symmetry of the Slepian sequences it is clear that V;(0) = 0 for k
odd, indicating that in (58) only even terms contribute to fig. The integral regres-
sion method proposed in Thomson (1982) overcomes this drawback by minimizing
the integral of the error, M, over the band (fo — W, fo + W). Both estimates and
a range of intermediate forms can be covered by including a weight function, w,

in the integral for the integrated error (Lindberg & Park, 1987; Thomson, 1990b)

f—I—W K-1 R R
M= [0S ) = Vil F = FIPulf - . (60)

W k=0
The point estimate then corresponds to w(f) = 6(f) and the integrated form to
w(f)=1. Obviously, this integration increases the bandwidth of the estimate
from f 4+ W to f 4+ 2W (since the xx(f)’s are smeared over f + W, see also Fig.
20 in Thomson, 1982). However, the effective sidelobes of the integrated estimate
are very low.

With the weighted integration the above formulas for fig and F' become

f - J ViU = Pt = fyas

w

() =S5 (61)
S [, Wlr = futs = g
and o
K=l Z/ V(s = )Pl - fras
Ff) = ——s A (62)
o3 [ o) = VilS - PPl - s



The [’s and [i’s are then evaluated at the FF'T bin frequencies, {f,}, NFFT '

In the mtm-program, only the unweighted integral and point regression forms
are used, i.e. w(f) =1 and w(f) = 6(f). For the integral form we have from
(29) that

K-1 K-1
Z/ Vil = PPAS = 3 A (63)
Also, it is easy to show that
KE-1 ,fiw K-1 N-

Z_: /f—W C(f - f z(f)df = Z Ak Z (1) exp(—i27 ft) (64)

and hence this term can be calculated efficiently using FFT. The only term which
is not easily evaluated is

K-1

Z/ |2k (f | df = Z__: Z—:o Z_: (t)vr(s)
) sin 27 W(t — s)
(t—s)

In fact the denominator in (62) is evaluated with numerical integration in the

X exp(iZﬂ'f(t —3)) X (65)

program, since negative values can occur if the absolute value is expanded and
the above formulas used to simplify the results (see Appendix A for details).

The jackknife method is applied to the point regression F'-test values to es-
timate the variance of the estimated line frequencies. We start by forming the
delete-one F'-test values, given by

(K — v)li(f |2§1|w
Fpy(f) = —5 2 . (66)
uzm (Vi)

k#]

Denote by fﬁﬁne the frequency of a maximum in Fm (f), that reaches the F-test

criterion imposed. The jackknife mean and variance of such a frequency is then

given by
K-1
hne — Z line (67)
and
. K —18=r, N2
line] __ line _ rline
Var{fm }= K ]Z:;J (fm fm ) ) (68)
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respectively. (These values are quoted in columns 2 and 3 in the .info file as
described in appendix A.)
The significance level of the F-test can be calculated using

P(Flrn,v)=1—1_wn (vy/2,11/2) (69)

vo+uv F

where in our case 11 = v and vy = 2K — v. Here, I,(a,b) is the incomplete
beta function (for details, see Press et al., ch. 6). The significance level at which
the hypothesis “variance of line component is smaller than unexplained variance”
can be rejected is 1 — P, with a low numerical value implying a very significant
rejection. Thus, P-values close to 1 imply a highly significant line component.

Thomson (1990b) gives some very good comments on the F-test in §5 of
his paper and some of these are restated below. Thomson points out that one
should pad the time series to 4 — —10N since strong periodic signals could be
missed if a coarser mesh were used. The frequency estimate of the lines, deduced
from maxima of the F'-test, can be refined further by using a single frequency
Fourier transform (this is not implemented in the program yet). Secondly, one
should be cautious in declaring significant lines since random fluctuations can
also give rise to high F'-test values. A rule of thumb is to use 1 —1/N as a lower
bound on the significance level (Thomson, 1990a). The single-line F-test will
usually fail on multiple lines when they are spaced less than W apart. Thomson
(1990b, §6) describes a multiple line F-test, which will be implemented in the
program in the future. Finally, it is convenient to reshape the spectral density
by removing the effects of the significant harmonic components and insert the
corresponding lines into the spectrum. This is done by replacing the x;(f)’s with
zi(f) — f;Vie(f — f;) for each of the lines and forming the background spectrum
as explained in section 4. Fach line is then superposed by adding a portion with
the shape of the corresponding F' line (out to the next local minimum) scaled in
to preserve power. The width of the line is thus proportional to the frequency
uncertainty of the estimate.

6 Cross-spectral analysis

When analysing a complex physical system, e.g. the atmosphere, we are not only

interested in the spectral properties of each variable that characterizes the system

but also in the interrelationships between these variables. To describe the relation

between two random processes, an analogous concept to the joint probabilty

distribution for random variables is needed. This is achieved by introducing the

cross-spectrum which represents the covariance between the two processes.
Consider two random processes X7 (1) and X,(t) that satisfy

(i) Xi(t) and X3(t) are stationary
(i1) cov{Xi(t), Xa(s)} = E{X1(¢)X;(s)} is a function of (s —t) only.
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Here, cov{-} denotes the covariance operator. The two processes are then said
to be jointly stationary and below we shall only be dealing with such processes.
Condition (ii) then tells us that the cross-covariance function

Ris(s) = E{X;(1)Xi(t+s)} (70)
= 1/2  f1/2 e_iwateiZﬂ'f'(t-I—s) d7* d ,
~1/2 /_1/2 E{dZ;(f)dZ:(f')} (71)

is a function of s only. The right hand side must thus not depend on ¢ and this
can only be so if the contribution to the double integral is 0 when f # f’. The
two processes are hence not only orthogonal but also cross-orthogonal, i.e.

E{AZ;(£)AZu([)} =0 i [ # [ (72)

Using this property (71) reduces to

Ruals) = [ Bz (), (73)

It is now convenient to introduce a special notation for ordinary spectra, or auto-
spectra. We denote the spectra of the two processes by

Su(f)df =E{dZ (NI}, Sa(f)df = B{|dZ(/)*} (74)

and define their cross-spectral density by

Su(f)df = E{dZ;([)dZ ()} (75)

The interpretation of this function is that it represents the average value of the
product of the coefficients of >/ in X;(¢) and X5(#). Alternatively, we can say
that whereas Si1(f)df, Sea(f)df represent the variance of dZ;(f), dZs( f) respec-
tively, S12(f)df represents the covariance between dZ;(f) and dZ>(f) (Priestley,
1981).

To investigate further the interpretation of the cross-spectrum write it in polar
form

S1a(f)df = ara(f) exp(2127 d1a(f)) (76)

and similarly

dZ; = |dZ;|exp(i27 i ( f)). (77)
Combining these two equations gives

ara(f) exp(i21615(f)) = E{|dZ[|d Ze[}E{exp(i2n (41 (f) — ¢2(f)))}  (78)

This relation defines explicitly the meaning of the average value interpretation
stated above.
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We now define the complex coherency (at frequency f) by

Si2(f) '
(S11(f)S2(f))”

and coherence is then defined as |wis]. Using the above definitions of the auto-

wia(f) = (79)

spectra and cross-spectrum, (79) can be rewritten as

o ) = o). A2 (1)} %0
) (var{dZ(f)}var{dZs(f)})"/? ™)

so that wys(f) may be interpreted as the correlation coefficient between the ran-

dom coefficients of the components in X;(¢) and X3(¢) at frequency f. It follows
immediately that for all f
0 < fwa(f)] <1 (81)

for any two jointly stationary processes. As in the case of ordinary correlation
coefficients the closeness of |wi2(f)| to unity indicates the extent to which the
random coefficients (at frequency f) are linearly related. The form of |wi2(f)]
over all frequencies determines the extent to which the processes X;(t) and X»(¢)
are linearly related (Priestley, 1981). The coherence can thus be thought of as
a correlation coefficient in the frequency domain. It is easy to show that wiy is
invariant under linear transformations of Xi(¢) and X,(¢), just as in the case of
two ordinary random variables.

The interpretation of the phase spectrum ¢12(f) is best illustrated with the
following example. Consider two stationary random processes, Xi(t) and X,(t),
that satisty a linear regression relationship but with time delay d,

X (t) = aXa(t — d) + e(t), (82)

where €(t) is white noise, uncorrelated with Xy(¢). Using (5) gives

1/2 .
Xot—d) = [ L hazy(f) (83)
—1/2
1/2 .
— / ez?ﬂft (e—ZQrfddzz(f)) (84)
—1/2
so that '
A7y = ae™*™ 447, 4+ d Z.. (85)

Since dZy and dZ. are uncorrelated the cross-spectrum can be expressed in terms
of the auto-spectra, e.g.

= ae " PIE{|dZ, ]} (87)
= ae_i%fdsgg(f)df. (88)
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From this expression we can read off the amplitude and phase of Sis(f),

Oélz(f) = Cl522(f)v ¢12(f) = —df- (89)

In this case, the phase spectrum ¢12(f) is thus a linear function of frequency with
slope d, equal to the magnitude of the delay.

In general, ¢15(f) is a more complicated function of frequency but in view of
the above example it is sensible to define the envelope or group delay

)= -2
df
which measures the time delay between the components in the two processes at
frequency f.

Turning now to the multple-taper estimates of the various functions introduces
above we obviously have for the coherency estimate

~ S'12
W1 = %= =
(511522)1/2

(90)

(91)

where we have used the weighted average, (44), to estimate the auto-spectra and
the estimate for the cross-spectrum is

K-1

) > i Prnr(Ndei (s 4 (f)
Sia(f) = =5 : (92)
; dyk(f)d2 k()

Here, the extra subscripts refer to the two series being analysed. The delete-one
estimates, {ﬁ)m }?’:—017 used when calculating jackknife deviations, are (obviously)
obtained from the above formulas by using gm instead of S for the auto-spectra
and omitting the corresponding term from the sums in (92).

The probability density of coherency estimates based on independent samples
from two jointly stationary processes is complicated. Hence, it is convenient to
transform this statistic so that it is approximately normally distributed. Here,
the inverse hyperbolic transformation is used as suggested by Thomson & Chave

(1990). We thus study
Q = V2m — 2tanh ™" (iy,)) (93)

where m is the number of independent samples, which is taken as K here. (It
may be more appropriate to use v(f)/2 from (48), and also reduce m by 1 at
frequencies where line components have been removed.) The transformation (93)
converts estimates of |wi2| to an almost Gaussian distribution with mean

1

E{Q} = v2m — 2tanh ™" (Jwys]) + o

(94)
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and unit variance (Thomson & Chave, 1990). Hence, plotting the transformed
coherence along with +1 jackknife deviation limits immediately reveals whether
the jackknife tolerance is close to 1 or not.

The jackknife variance of QQ(]w2]) is calculated by transforming the delete-one
estimates W using (93), and then proceeding in the standard way described in
appendix B. If the average over frequency of the jackknife variance falls far from
the predicted value of 1, some assumptions of the theoretical variance calculations
are probably incorrect (e.g. the processes are non-stationary, outliers in the data,
etc.).

Finally, the phase spectrum ¢ is estimated. We follow Thomson & Chave
(1990) when calculating jackknife deviations. The phase is given by
biz =

ﬁ)12|

(95)

and the delete-one phase factors, qgm are calculated by substituting ﬁ)m in (95).
The jackknife variance of qgﬂ is then given by

var{gn} =2(m — 1)(1 —

i) (96)

and this value is used when calculating +1 jackknife deviations for qglg. As
discussed above, the slope of the phase spectrum represents the group delay
between the two processes.
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Appendix A: The mtm-program

The program developed to implement the MTM is written in C. It is written as
a UNIX-filter, i.e. all interaction with the program is through parameters given
on the command line and all output is to files specified there (or stdout). The
program can be split up into three parts: processing of control parameters and
input of data, spectral analysis calculations, and output of results.

A.1 Parameters and input

When the program is run without any parameters by writing
hengill:™ > mtm

(or with some unknown parameters) the following message appears:

Usage: mtm -i infile [infile2] -o outfile -v dpss-file
-w (NW) -k (K) -L -S -n (nd) -a (nm) -s (skip) -c {cp)
-x (zeol) -y (ycol) -f (low) -F (hi) -d (step)
i infile - input from infile (stdin)
o outfile - output to outfile (stdout)
v dpss-file - read /write dpss from/to dpss-file (/dev/null)
w (NW) - bandwidth-time value used in dpss (4)
k (K) - number of eigenspectra used (5)
L - use log(data) (no)
S - interpolate with spline (no)
n (nd) - use nd points of data (all)
a (nm) - use nm-point averages (1)

s (skip) - skip first skip points (0)

x (zeol) - use xzcol as x-data from multicolumn datafile (1)

v (ycol) - use ycol as y-data from multicolumn datafile (2)

f (low) - lower freq. limit of spectra in units of nyquist frequency (0)
F (hi) - upper freq. limit of spectra in same units (1)

d (step) - frequency resolution for spectra in same units (1/Nfft)

¢ (ep) - critical probability for reshaping (1-1/nd)

t (cf) - critical F-test value for reshaping (0)

P - use point regression in reshaping (default)

[ - use integral regression in reshaping (no).

Default values are quoted in parenthesis. All the the parameters are optional in
the sense that the program can be run with default values by redirecting stdin
from a datafile and redirecting stdout to some output file. The only requirement
is that at least one option be given on the command line (otherwise only the help
message is printed and the program exits). Hence, the simplest form for running
the program is (-P is just included to suppress the default message)
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hengill:™ > mtm -P < mydata.dat > mtm_mydata
or the equivalent form
hengill:™ > mtm -1 mydata.dat -o mtm_mydata

Note that the DPSS will not be saved here since no -v option is given.

When two input files are specified, indicating that cross-spectral analysis is
to be performed between the two data sets, their names have to be enclosed in
quotation marks (" or ’):

hengill:™ > mtm -i "mydatal.dat mydata2.dat" -o mtm_mydata

This requires that the two data sets have the same sampling rate and are of equal
length. The column used as time data is selected with the -x option (defaults
to 1) and the column with the time series itself is selected with the -y option
(default is column 2).

The -n and -s options control which part of the original data is passed to the
mapping routine. Here, the data is transformed according to the -L, -S and -a
options. Note that averaging reduces the number of points by a factor of 1/nm.

The dpss-file is read if it exists but otherwise it is created and the Slepian
sequences calculated according to the values of N, NW and K, which are set using
the -n, -w and -k option respectively, or determined from default values (nd =
number of data, NW = 4, K = 5). After reading (or calculating and writing)
the DPSS, points where no data is available (indicated by NA in input file) are
set to 0. This method of treating series with missing data is commented on in
Lindberg & Park (1987). However, the theory of spectral analysis of unequally
spaced time series is not very developed and this feature should be used with
caution.

The -f and -F options control which part of the spectrum is written to outfile.
The default is to write the whole spectrum, from f = 0 to the Nyquist frequency.
The resolution of the Fourier transforms is determined from the length of the data.
By default 2N < Nppr < 4N and the corresponding resolution is A f = 1/2Nppr,
but higher resolution can be requested by using the -d option. Note that values
given with -f, -F and -d are in units of Nyquist frequency. The last four options
listed control how the reshaping is performed, if -¢ (ep) is given, ¢p is used as
a minimum value which the transformed F-test (from (69)) must acquire for
removal of line components. The -t option is similar except that ¢f now is a
minimum value of the F-test itself. The -P and -I flags are mutually exclusive
and control which F-test is used when reshaping the spectrum.

The input formats currently implemented are only two, multi-column where
one of the columns is the time variable, and sequential files preceeded by a header
in the following format:
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first line can contain anything (not read)
# comment lines (optional)

format (0 or nonzero)

nd to dt

data

If format # 0 the rest of the file is read as a multi-column file. Otherwise it
is assumed to contain only the time series and the values of 0 and dt are used
as starting time and sampling interval, while nd is determined from the actual
number of data read.

A.2 Spectral analysis procedure

The first step in the spectrum estimation is to calculate the eigencoefficients
according to (33). This is done in mtm_eigenft by FFT-ing the tapered series. The
weights of each eigenspectrum are then calculated using the iteration procedure
described in section 4.2. The subroutine mtm_weight takes care of this and also
calculates the variance of the spectrum using the jackknife method. The jackknife
variance is calculated in two ways: by jackknifing the weighted average of the
eigenspectra, (44), and by jackknifing directly the iteration scheme, in which
case different weights are found for each delete-one spectrum estimate. These
two methods should give comparable results.

The second step is harmonic analysis. Two variants are included, point re-
gression, where the amplitudes and F-test values are determined by (58) and (59)
respectively, and integral regression where (61) and (62) are used. In practice,
the formula for fi7 is written as

S
|
L

Z (1) exp(—i27 fit)
fr(fi) = = (97)

>
k=0

where the sum over ¢ is evaluated by using FFT and the f;’s are the FFT bin
frequencies. The integral regression [F'-test values are then evaluated from

||M

K-1
(K =) (f)]? Z Ak
Fi(f) = 5o (98)
X [ ) = AUV )P

at the same frequencies f;. Here, w = 2NpppW is the width of the windows in
units of Af = 1/2Nppp. Note that two degrees of freedom are assumed for line
components. The integral in (98) is evaluated using the extended Simpsons rule
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(Abramovitch & Stegun, 1965, formula (25.4.6)). The routines which perform
the harmonic analysis are called pr_harmonic_analysis and ir_harmonic_analysis.

The next step is to reshape the spectrum. The criterion used for detection of
lines is given by ¢p or ¢f as described above. New eigencoefficients, :zjfhp(fi) are
first calculated by subtracting the lines,

() = (S i (£ Vi(f; — fline), (99)

where the sum is over all the J lines that reach the detection limit. The fre-
quencies {fhne 7=L are found by searching for local maxima in the F-test that
reach above the prescribed F'-test, or transformed F'-test, level. The continuous
spectrum is then constructed by weighting the reshaped eigencoefficients using
the same iterative method as before. The final spectrum estimate is composed
by superimposing the line components on the continuum, using the shape of the
corresponding peaks of the F-test (see Thomson, 1990b). The routines used here
are mim_reshape, mtm_weight and mitm_insert_lines.

The variance of the line frequencies is calculated by jackknifing the point
regression F'-test, i.e. finding its maxima when each window is deleted in turn.
This gives a sample of K estimates of the peak frequency and the variance is
determined from this sample as described in appendix B. The relevant routines
are all in the source file jackknife.c.

If two input files were given with the -1 option the program will first process
both of these as described above and write the spectral analysis results for each
time series. It will then perform cross-spectral analysis, calculate the coherency,
its phase and the transformed coherence as described in section 6.

A.3 Format of output

The final step in the program is output of results. For each input file the program
writes two files, called outfile.spctr and outfile.info, which contain the spectral
estimation results and information on the calculations respectively. The format
of the .spctr file is as follows:

column  contents

1 frequency (usually from 0 to Nyquist = 1/2At)
raw, weighted spectrum estimate (before reshaping)
reshaped spectrum estimate, including lines
weighted background spectrum estimate
5% confidence limit on background spectrum, from (52)
95% confidence limit on background spectrum, (52)
phase spectrum of background spectrum, from (47)

O =1 O T = W N

point regression harmonic amplitudes, equation (58)
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9 point regression F'-test, equation (59)

10 point regression F'-test, transformed to [0, 1] using (69)

11 integral regression harmonic amplitudes, equation (61)

12 integral regression F-test, equation (62)

13 integral regression F-test, transformed to [0, 1] using (69)

14 variance of log(.S), obtained by jackknifing weighted
spectrum, equation (51)

15 variance of log(S), obtained by jackknifing iteration
scheme, (43) and (44)

16 stability estimate of raw, weighted spectrum, from (48)

17 stability estimate of background spectrum, obtained from (48)

18 jackknife bias estimate of log(raw, weighted spectrum), (53)

19 jackknife bias estimate of log(background spectrum), from (53)

A sample .info file is given below. The first line gives the name of the input
file. Lines 2 and 3 give the number of points, the time origin, and time interval,
for the original and mapped data respectively. The variance and mean given
in line 4 are deduced from the mapped data and the next two lines give the
frequency range, FFT-resolution and Ngpp. Lines 7 and 8 give bias and variance
estimates of log S deduced from Gaussian theory with v = 2m being the degrees
of freedom of the spectrum estimate. The bias estimate is

By(m) = (m) — logm, (100)
and the variance of log S is given by
var(log S) = ¢'(m) (101)

where 1) is the digamma function and v’ the trigamma function. Formulas for
computing ¢ and ¢’ can be found in Abramowitz and Stegun (1965). These
values are to be compared with the jackknife estimates in columns 14 and 18
in the .spetr file. Significant departures from the Gaussian values can indicate
outliers or nonstationarity (see Thomson & Chave, 1990, and Thomson, 1990b,
for details).

The Rayleigh resolution and bandwidth of filters is listed along with the total
variance and variance in lines as estimated from (42). The innovations variance
for the background spectrum is given in units of the variance of the continuum:

ot = e [ st (102

—1/2
with )
1/2
b= [ Spar (103)

—-1/2
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being the continuum variance. The properties of the DPSS are next, with the
average variance efficiency derived from the K sequences used being

1
Ex = . (104)

- 2
NSNSt L i vi()]

Thomson (1982) comments on variance efficiency and emphasizes that it should

not be taken as a strong criterion when comparing spectrum estimates since it is
strictly only valid for white noise processes and also ignores bias.

The last part of the .info file lists the properties of the line components that
have been removed from the initial raw spectrum. The first column gives the
frequency of the maxima in F-test, the jackknife estimate is in column two and
the jackknife standard deviation in the third one. The period and estimated
standard deviation are given along with amplitude and phase, determined from
(58) or (61) as selected with the -P/-1 options. The final column is the F-test
value at the frequency in column 1.

# Infile: hiti6001-8410.030

# In: points = 298 t0 = 85 dt =1

# Map: points = 298 t0 = 85 dt =1

# variance = 98.9531 mean = -56.2855

# Spectra: low £ =0 high £ = 0.5 df = 0.000488281 dt =1

# nfft = 1024

# Gaussian bias of 1nS, Psi(5)-1n5 = -0.10332 Psi(4)-1n4 = -0.130177

# Gaussian variance of 1nS, Psi’(5) = 0.221323 Psi’(4) = 0.283823

# Rayleigh resolution, 1/H = 0.0033557 4/0 window = 0.0134228

# Estimated total variance, sigma~2 = 3289.07

# Estimated variance in lines, sigma™2-sigmar~2 = 3277.16

# Innovations variance, (sigmai/sigmar)~2 = 0.828152

# DPSS: points = 298 oW = 4 K=5 VarEff = 0.816485

# 2 lines above 0.996644 ftest confidence level, integral regression

# freq. jackf df period T dT amplitude phase F-test
0.0834961 0.0834961 0.00142494 11.9766 0.204392 13.3767 1.48245 592.713
0 0 0.00113242 ++ ++ 56.4594 1.5708 33.4898

A sample .info file.

When cross-spectral analysis is performed the program writes similar files
for the second input file, called outfile2.spctr and outfile2.info. It also creates
a separate file, outfile.csa, with the cross-spectral analysis results in the format
given below:

column  contents

1 frequency (usually from 0 to Nyquist = 1/2At)
magnitude squared coherence, |112]? from equation (91)
normal transform of coherence, Q(1012) given by (93)
Q(tby2) — 1 jackknife deviation
Q(w12) + 1 jackknife deviation
phase of coherency, qglz(f) from equation (95)
qglz(f) — 1 jackknife deviation, equation (96)
qglz(f) + 1 jackknife deviation, equation (96)

O -1 O Ot k= W N
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A.4 Some comments on additions

All dynamic allocation of data structures is contained in alloc.c. The data-
structures are defined in the header file fastar.h and extending them is simply
done by adding the required components to the structures and allocating space
in the corresponding alloc-routines. Remember also to change the relevant free-
routines.

Since the main emphasis here has been on the analysis of short time series,
section averaging has not been incorporated into the current program but this
should not be difficult (see Thomson & Chave, 1990). Robustification of the
section-averaging method is also well documented in the literature and gives su-
perior results to standard techniques when the data is contaminated with outliers
(Chave et al., 1987; Thomson & Chave, 1990; see also Thomson, 1977).

The next addition to the mtm-program will be the coding of the multiple-
line test, described by Thomson (1990b). This is a necessary tool to detect line
components that are separated by less than the filter bandwidth.

One further refinement that needs consideration is to apply the bootstrap
method to determine confidence levels for the integral regression F-test (Lindberg
& Park, 1987). In the meantime, it is probably better to use the point regression
F-test, since its distribution is closer to the true F-distribution.

Appendix B: A few statistical terms

In this report, most of the statistical terms have been used without further defini-
tion. Below, some of these are defined, and the jackknifing method is described.

The set of points representing the possible outcomes of an experiment defines
the sample space of the experiment. A random variable is a real (or complex)
valued function defined on this space. The probability density, p, of a continuous
random variable z is defined by the following properties:

(i) plz) =0
(ii) S22 pz)de =1
(iil) [? p(x)dz = P(a < = < b)

where P(-) denotes probability. We are often interested in some parameters of
the density function, p(x), e.g. the mean and variance of the random variable
x which are given by the first and second moments of the density respectively.
The distribution function, F', of the continuous random variable x is given by the
integral of the density:

F(X) = /X Ft)dt = P(x < X). (105)

— 00

Consider a random variable # whose density fuction depends on the parameter
f. Let x1,...,xn represent a random sample of n independent observations of
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x and let é(:z;l, ...,xn) be a function of the sample that is taken as an estimate
of #. Such a function is called a statistic. It is said to be sufficient if it can be
inverted to obtain the original data. A statistic is a random variable whose value
is determined solely by the sample values. A statistic é(:z;l, ...,xn) is called an
unbiased estimate of the parameter 0 if E{é} = 0 for all §. This means that the
distribution of the random variable  has the mean value 6 (see, e.g. Hoel, 1971).

Now, denote by 0.1 the estimate of # obtained by using all the N obser-
vations available, then form N additional estimates, {ém MY, by deleting each
observation in turn from the sample, i.e.

ém :é(x17'"7xi—17xi-|—17---7x]\7)- (106)

These values are termed delete-one estimates and are the key ingredients in the
jackknifing method. Although the jackknife was first introduced to obtain a lower
bias estimate of éau, a more important application for it is in the nonparametric
estimation of the variance of an arbitrary statistic. The jackknife variance of éall

is given by (Thomson & Chave, 1990)

N-1X

var{f,} = T; [0 — gmr (107)
where
J A
0 = ﬁ;% (108)

is the mean of the delete-one estimates.

The statistical properties of the jackknife are discussed in Thomson & Chave
(1990). It is emphasized that transforming the random variable being jackknifed
is essential when its distribution is bounded or strongly non-Gaussian. The trans-
formations used above are the logarithmic transformation when jackknifing power
spectra and the inverse hyperbolic transformation when jackknifing coherences.

The notion of mean-square convergence is defined as follows (Priestley, 1981):
Definition: Let Uy,U,,....U;, ..., be a sequence of random variables. The
sequence {U;} converges in mean square if and only if there exists a random
variable U such that

lim BE{(U; = U)} = 0.

11— 00

This is denoted by
Lim.U; = U. (109)

11— 00

The Riemann-Stieltjes integral of the form
b
[ atazi)
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is then defined as the mean-square limit of the discrete summation

n

> 9t Z(t) = Z(tia)}-

=1

A very extensive discussion on orthogonal increment processes is given in
Priestley (1981, ch. 4). Here we only restate the fundamental theorem which
states that every stationary process can be expressed in terms of such a process.
Theorem: Let {X(#)}, —00 <1 < o0, be a zero-mean stochastically continuous
stationary process. Then there exists an orthogonal process, {Z(w)}, such that,
for all ¢, X(¢) may be written in the form,

X(t) = / 7 expliwt)dZ(w), (110)
the integral being defined in the mean-square sense. The process {Z(w)} has the
following properties:

(i) E{dZ(w)} =0 for all w
(i) {|dZ(w)|*} = dH(w) for all w

where H(w) is the (non-normalized) integrated spectrum of X(¢).
(iii) for any two distinct frequencies, w,w’, (w # w')

E{dZ*(w)dZ(w')} = 0.

The results of this theorem carry over to the discrete case, the only modifica-
tion being that the range of the integration becomes (—7,7) and the condition
that the process be stochastically continuous is no longer meaningful. The result
is the spectral representation (5), where we have used frequency f instead of
angular frequency w = 27 f.
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