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Southwestern North America: 25-40N, (125W)-(95W)
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Figure 1: histogram of precipitation anomalies from all models (top), 
and histogram of P-E anomalies (bottom) for the winter season 
(October-March). P-E in SWNA region: 25-40N and 125W-95W. 
Anomalies relative to the 20th century  climatology.

FIgure 2 (left): bar graphs of correlation
coefficients (top) and regression coefficients
(bottom) for P-E and tropical Pacific SSTs. P-E in 
SWNA region: 25-40N and 125W-95W, tropical 
Pacific SSTs: 5S-5N and 180E-90W. Anomalies 
relative to the climatology of that century 
(1900-1999 or 2000-2099). 15 out of 24 models 
used; those with the closest correlation to observed 
(above 0.3). Also shown, the 15-model mean.  

Figure 3 (above): P-E and SST index correlation and regression maps for 20th c. 
observed data and 20th and 21st c. simulations. Model m05 GFDL CM2.1 created 
by the Geophysical Fluid Dynamics Laboratory of NOAA was chosen as a reasonable
approximation of observed patterns and strengths. 

Tropical Pacific geopotential height correlation with SST index
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Tropical Pacific geopotential height regression with SST index
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FIgure 4 (above): bar graph of correlation coefficients (top)
and regression coefficients (bottom) for 200 mbar geopotential
height in the tropical Pacific and SSTs, using the
same models excluding m23 which did not have the required
data. Geopotential height region: 10S-10N and 150E-90W, 
tropical Pacific SSTs: 5S-5N and 180E-90W.

Figure 5 (above): bar graphs of correlation coefficients (top)
and regression coefficients (bottom) for 200 mbar geopotential 
height in the northern Pacific and SSTs. This region has a 
negative correlation and regression with tropical Pacific SSTs. 
Geopotential  height region: 30-60N and 170E-120W, tropical 
Pacific SSTs: 5S-5N and 180E-90W. 

Figure 6: 200 mbar geopotential height and SSTs correlation
and regression maps for 20th c. observed data and 20th
and 21st c. simulations from model GFDL CM2.1.

Figure 7: bar graph of correlation coefficients (top) and 
regression coefficients (bottom) for 200 mbar zonal wind 
and SSTs, using the same models for geopotential height.
Zonal wind region: 20-40N and 170E-120W, tropical Pacific
SSTs: 5S-5N and 180E-90W.

Figure 8: Zonal wind and SSTs correlation and
regression maps for 20th c. observed data and 20th
and 21st c. simulations from model GFDL CM2.1. 
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Precipitation anomaly (mm/day)

 The histograms for 21st century precipitation and P-E in Figure 1 do not noticeably 
widen compared to the 20th century distributions, showing that S/I variability does not 
seem to increase due to warming. Because anomalies are computed relative to the 20th 
century mean, the peak shifts left showing the mean drying. The focus is on winter 
because it is the moisture supply season and drives summer conditions.  
 
The 15-model mean correlation and regression coefficients of P-E with the SST index, 
shown in Figure 2, actually decrease slightly in the 21st century, indicating that a given 
SST anomaly would cause weaker P-E anomalies. Figure 3 shows the GFDL CM2.1 
model’s fairly close approximation to observed data with warm tropical Pacific SSTs 
forcing precipitation in SWNA. The GFDL CM2.1 model is typical in that the 
relationship weakens in the 21st century but retains the same spatial pattern. Summer 
was confirmed to have a weaker correlation with SSTs and is again not the focus. In 
contrast to the relations between P-E and SST, the correlation and amplitude of 
geopotential height anomalies with tropical Pacific SST anomalies strengthen  (Figures 
4 and 5). This increase in the amplitude of height anomalies does not, however, translate 
into an increase in the amplitude of zonal wind anomalies over the North Pacific, 
because mean zonal wind correlation and regression do not change in the 21st century 
(Figure 7).    
 

 We used data from all the 24 IPCC global climate models used in the Fourth 
Assessment Report, following the A1B emission scenario which assumes that CO2 
emissions increase until the year 2050 and decrease afterwards to 720ppb in 2100. 
Histograms of summer and winter precipitation and P-E anomalies were created for 
each model and cumulatively. An increase in variability would appear as a wider 
distribution in histograms of projected 21st century precipitation and P-E anomalies 
relative to the distribution of the 20th century anomalies.  
 
A linear regression was also used between the tropical Pacific SST index and three 
variables: P-E, geopotential height, and zonal wind anomalies. The SST index is 
computed as surface temperature anomalies over the tropical Pacific region (5S-5N, 
180W-90W), where SST variability is dominated by the El Niño Southern 
Oscillation. The SWNA region of precipitation is defined as land areas 25-40N and 
125W-95W. Two regions of geopotential height were correlated and regressed with 
SSTs in the tropical Pacific, the area immediately above and the Aleutian Low region 
above the Northern Pacific Ocean. Height anomalies in these regions impact the jet 
stream which steers storm systems into western North America.  
 
Observed data for the three variables and SSTs was also used to provide a standard 
for the models’ 20th century projections; precipitation from the Global Precipitation 
Climatology Center, SSTs from the Hadley Center (both from 1901-2007), and 
height and zonal wind from NCEP/NCAR Reanalysis (1949-2010). Detrending was 
applied to remove the drying or warming changes in the mean climate from the time 
series, so that the direct relationship between P-E, SST, height, and wind variability 
could be isolated. These results are presented as bar graphs and maps, allowing side-
by-side comparison of the 20th and 21st century correlation and regression 
coefficients. 
 

Results Continued

 A popular idea surrounding the subject of climate change is that greenhouse 
warming will lead to ‘more severe and frequent’ droughts. IPCC multi-model 
ensemble means have already projected a shift to a drier climate beginning in 
the late 20th century to the early 21st century in southwestern North America 
(Seager et al. 2007). This is a regional effect of the poleward expansion of the 
subtropical dry zone and intensified water vapor transports from rising 
humidity, causing wet and dry climates to become more extreme (Held and 
Soden 2006). The drying of southwestern North America (SWNA) is clear and 
robust in projections of changes in precipitation – evaporation (P-E) anomalies 
averaged over time periods of more than a decade or so. However, this shift 
will not necessarily lead to increased variability or more extreme seasonal-to-
interannual (S/I) departures from the new base state. Our objective was to 
determine whether models project ‘more severe and frequent droughts’ in the 
sense of larger S/I precipitation variability in SWNA. Tropical Pacific sea 
surface temperature (SST) variability drives much of the S/I precipitation in 
SWNA so we also study changes in the relationship between P-E and SST.  
 

 Although a given circulation anomaly operating on an atmosphere holding more moisture 
due to warming could cause larger amplitude P-E anomalies, this does not appear to be 
the case as seen by the distribution in the histograms and the correlation and regression 
between P-E and the SST index. The geopotential height anomalies over both the tropical 
and North Pacific do reach a larger amplitude and stronger correlation with the SST 
anomalies in the 21st century. This might be expected because of the possible increase of 
heating anomalies for a given SST anomaly, due to the nonlinear increase in specific 
humidity with temperature. However, geopotential height anomalies may not translate 
into an increase in the amplitude of zonal wind anomalies because other terms in the 
meridional momentum budget may change given that circulation is not in pure 
geostrophic balance. It is well-known that storm tracks change under global warming and 
will impact the mean winds. The mean zonal wind anomalies are important in ‘steering’ 
storm systems and determining where in western North America they bring precipitation 
(Seager et al. 2010). The fact that zonal wind anomalies over the North Pacific do not 
strengthen in response to global warming could explain why P-E variability does not 
increase even as geopotential height variability does. In future work we will further 
explore the behavior of P-E in SWNA in the 21st century’s warming atmosphere and look 
at the dominant terms in the P-E balance to see which change. This will allow clarification 
of why the P-E amplitude relative to the SST index actually weakens even as humidity 
increases.     
 


