Brandon Shuck

I am a solid-earth geophysicist and my research focuses on characterizing the structure and evolution of the Earth’s lithosphere. In particular, I seek to understand the feedbacks between stress, metamorphism, deformation, topography, climate, and mass/fluid fluxes along plate boundaries and mature tectonic settings. I am interested in the manifestation of these processes spatially from the upper mantle to the surface, and temporally from the creation of new lithosphere to its destruction at subduction zones.

My interdisciplinary approach is founded in the imaging, interpretation, and inversion of active-source seismic data, combined with complementary data types, such as passive seismic imaging, geologic observations, and geochemical analyses. With my research, I aim to improve our knowledge of fluid-tectonic interactions within the lithosphere, and the consequential hazards from earthquakes, tsunamis, and volcanoes. I am currently working with new seismic data collected along the Cascadia subduction zone to better understand these tectonic processes.


My passion for the geosciences was instilled during my early youth growing up in Colorado, where I was exposed to incredible exposures of geologic formations. This curiosity led me to begin my academic adventure at Western Colorado University, where I received B.S. degrees in Geology and Mathematics. At Western, I was emersed in the beauty of the Gunnison valley and became fascinated with the stratigraphic record of the Ancestral Rockies. Field trips to the Moab region along the Colorado Plateau, skiing on the Crested Butte laccolith, and floating rivers carving through Precambrian basement rocks further solidified my passion for the outdoors and connection to the geosciences.

Following my time at Western, I pursued a PhD at the University of Texas at Austin Institute for Geophysics. At UT, I infused my background in geology and mathematics by developing skills in marine geophysics to study plate tectonic processes. I was fortunate to interact with a diverse range of geoscientists across the globe, acquiring marine seismic data in New Zealand, deploying seismometers in the Kenyan Turkana rift, and venturing to southern Spain to collect samples for geochronological analyses. My PhD research targeted two fundamental tectonic process – continental rifting and subduction initiation. I analyzed active-source seismic data along the Eastern North American Margin and Puysegur Margin, New Zealand, to investigate the mechanisms that enable lithospheric rupture during the breakup of continents and formation of subduction zones. After graduating from UT, I started my current position at Lamont-Doherty Earth Observatory as a Postdoctoral Research Scientist.

Education

Western Colorado University (2011-2015)

B.S., Geology, Mathematics

University of Texas at Austin (2016-2021)

Ph.D., Geosciences

Honors & Awards

LDEO Postdoctoral Fellowship (2021)