

Figure 3. UPPER PANEL (left) Well-dispersed Raleigh wave from a Mid-Atlantic Ridge earthquake observed on four vertical-componen broadband stations in Northeastern US. (middle) Map showing four stations (HRV, YALE, BING, SSPA), which define southern and northern trianges. (right) Local estimate of phase velocity for each triangle, computed with the differential phase method. Note that the northern triangle (solid curve) has systematically lower velocities. LOWER PANEL (left) Map of broadband seismic stations (triangles) in northeastern US grouped into four triangular three-station arrays that are used to make local measurements of Rayleigh wave phase velocity, as follows: (T1) PAL-BINY-HRV; (T2) PAL-SSPA-BINY; (T3) PAL-HRV-LBNH; (T4) BINY-HRV-LBNH. Shading shows an area of NA95 model (Van der Lee and Nolet, 1997) where shear wave velocity is below $4.35 \mathrm{~km} / \mathrm{s}$ at 100 km depth. Orientations of anisotropic symmetry axes in two layers of mantle fabric (Levin et al., 1999) are shown by solid arrows (U-upper; L-lower). An open arrow shows the shallowing of the lithosphere-asthenosphere boundary towards 30 deg NW inferred in this study (Menke and Levin, 2001). (right) Variation of the average phase velocity with azimuth for four trianges, in the $75-100$ s period range (upper plot) and $35-50$ s period range (lower plot). Each symbol represents a single earthquake observed on a single triangle of stations (black circles, T1; black squares, T 2 ; grey circles, T 3 ; grey squares, T 4 ; see Figure 3 for triangle definitions). The bold curve is a smooth polynomail fit to all the data.

