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Abstract

We present three case studies of traveltime tomography applied to regional imaging of
the earth's crust and upper mantle.  The first case study investigates the imaging of
Poisson's ratio using measurements of compressional and shear wave traveltimes.
Inversions schemes that jointly fit both types of traveltime data and that selectively
damp the compressional to shear wave velocity ratio are shown to be very effective.
The second case study focuses on the ability of joint inversions of crustal and Moho-
reflected wave traveltimes to image both crustal velocity structure and Moho
topography.  The ability of this kind of tomography to distinguish Moho topography
and lower crustal heterogeneity is shown to be poor.  The third case study examines
the ability of teleseismic tomography to determine the shape of a mantle plume.  A
new test for departures from an axial shape is proposed and tested.  We also present a
case study of earthquake location, that compares locations made with traditional P and
S wave traveltimes to those based on differential P wave traveltimes (i.e., the double-
difference method). The underlying tomography software, “raytrace3d” that is used in
this study and which is publicly and freely available is described, and the technical
elements of traveltime tomography are fully documented in an appendix.

Introduction

Since its development in the 1970's, seismic traveltime tomography has had a
profound impact upon our understanding of the internal structure of the earth and on
the practice of seismology. The literature associated with applications of tomography
is huge, and we can make no attempt to review it here.  Studies range in scale from a
few tens of meters, as in cross-borehole tomography, to the whole earth, and are
relevant to issues as diverse as the pattern of mantle convection, the origin of mantle
plumes, the formation of continental roots, mantle upwelling and melting at mid-
ocean ridges, the maximum depth of subduction, crustal genesis, the magmatic
plumbing of volcanoes, the width of fault zones, and the pattern of fractures in the
uppermost crust.  Furthermore, the desire to image three dimensional earth structures
in ever greater detail had driven a tremendous growth in seismic instrumentation,
including permanent observatories and short-term deployable land and ocean-bottom
seismic stations.  This instrumentation permits the deployment of dense arrays that
provide high spatial resolution measurements of the seismic wavefield, such as are
needed to correctly identify non-first arrival phases and to effectively use natural
sources such as earthquakes (Fig. 1). The new instrumentation, as well as its use in
large aperture arrays, has had significant impact on other areas of seismology as well
(e.g. studies of the earthquake source).

The purposes of this paper are three-fold.  The first is to introduce “raytrace3d”, a
freely available software program for raytracing, seismic traveltime inversion, and
earthquake location in three-dimensional isotropic media.  The second is to discuss
several issues in seismic inversion that are of current interest in regional inversions
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for the structure of the crust and upper mantle, using case studies performed with the
raytrace3d program. The third is to review the underlying algorithms used in
raytracing and similar seismic inversion programs, to make the inner workings of
such software  more accessible, and a bit less of a “black box”.

Raytrace3d

There is no single route to seismic tomography. Broadly-speaking, most computer
programs that implement tomographic algorithms use measurements of seismic
traveltimes to produce estimates of the earth's velocity structure.  But as with many
other complicated data analysis procedures, many different algorithms and solution
strategies can (and are) employed to achieve this overall result.  A software developer
has perhaps a half-dozen major decision points, each with several alternatives.  As a
result, the number of variants of tomographic algorithms are legion.  We enumerate a
few of the major considerations here.

1. Velocity parameterization.  While the earth's velocity field varies continuously with
position, any practical description of it requires that it be represented by a finite –
though perhaps large – number of parameters.  Constant-velocity voxels (the three-
dimensional analog of pixels), splines and truncated orthogonal expansions (e.g.
Fourier series, spherical harmonics) can all be used to this purpose, and all have their
advantages and disadvantages.  Voxels, for instance, are conceptually simplest, but
need to be tiny in size (and hence huge in number) to realistically represent regions of
the earth with sharp velocity gradients. Orthogonal expansions have some useful
mathematical properties, but are non-local, and can therefore “transport” error to
unexpected parts of the model.  Splines, which use an interpolation scheme to
compute the velocity between a set of control points (or “nodes”) are conceptually
(and computationally) more complex than voxels, but more localized than orthogonal
expansions.  For reasons that will be described below, raytrace3d uses linear splines,
with nodes forming the vertices of the tetrahedra.

2. Method of computing traveltimes.  Two method of computing traveltimes – each
with many variants – are commonly used in tomography.  Both rely upon an
approximation to the wave equation called “ray theory” that is valid only at high
frequencies (i.e. it omits wave diffraction).  The first, “ray tracing” first finds rays –
paths along which seismic energy propagates − connecting a given source and
receiver, and then determines the traveltime along each ray.  The second, “Eikonal
solver” method finds the wavefront (surfaces of equal traveltime) that form concentric
shells about the source, and then infers the ray paths from their shape.  Current
implementations of the Eikonal solver method are faster than ray-tracing, but suffer
from a serious limitation:  While more than one ray may connect a given source and
receiver, the Eikonal solver can find only the first-arriving of them.  In cases where
observations of secondary phases are of interest, ray-tracing may be the preferred
method.  Raytrace3d uses ray-tracing, however it does so without explicitly solving
the ray equation (which would ordinarily require numerical integration of a
differential equation), since the path of a ray inside of a linear spline is exactly an arc
of a circle.  FAST, another publicly available tomography code, is based on an
Eikonal solver (Zelt, 1998; Zelt and Barton, 1998).
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3. Choice of unknowns.  One of the underlying complexity of tomography is that
knowledge of the ray paths are required to solve for the unknown velocity structure,
but those raypaths depend on the structure.  This problem is usually handled though
linearization: the velocity structure is divided into a reference or  “background” part,
v0(x,y,z), that is assumed to be known, and a perturbation, ∆v(x,y,z) that is unknown,
but assumed to be small.  Only v0(x,y,z) is used in the raytracing, and the effect of
omitting ∆v(x,y,z) on the raypaths is assumed to be negligible. Once the perturbation,
∆v(x,y,z), is found, the whole process can be iterated, with an updated reference
velocity.

As far as the tomography is concerned, v0(x,y,z) and ∆v(x,y,z) represent two entirely
different quantities, and completely different methods can be used to represent them.
If, as in the case of raytrace3d, v0(x,y,z) is represented with splines, then four
parameters define each node (its velocity and its position in three dimensions).   The
velocity perturbation, ∆v(x,y,z), could also represented with splines, but there is no
requirement to do so.  Raytrace3d takes a different route, and forms ∆v(x,y,z) by
perturbing the position and/or velocity of the v0 nodes.  The actual model parameters
are arbitrary linear combinations of these perturbations.  The advantage of such a
seemingly complex scheme is described below.

3. Solution method.  Most tomography use some variant of the principal of least-
squares to select a best-fitting ∆v(x,y,z). They select a model that minimizes some
measure of traveltime error.  (Method that use voxel representations and the so called
“back-projection” algorithm are arguably an exception to this rule). The known
traveltimes and unknown ∆v's are connected by a very large system of linear
equations.  Many techniques are available for solving such a system.  Raytrace3d uses
an iterative technique based on the biconjugate gradient algorithm (Press, 1992).

4. Method of imposing smoothness on the velocity field.  While the earth's velocity
field probably has variability at all scales, any experiment makes only a finite number
of observations and can therefore resolve features only down to some minimum size.
Furthermore, the idea that energy propagates along distinct rays is itself only an
approximation.  Any real experiment uses waves with finite frequency that average
the seismic velocity field on scales on the order of a wavelength.  The tomographic
solution for the velocity field ought to have a degree of smoothness commensurate
with these factors. (The finite wavelength of seismic waves seriously limits
resolution. Consider that a 10 Hz seismic wave – about as high of frequency as is used
in crustal imaging experiments – has a wavelength of about half a kilometer). 

Two strategies can be applied to impose smoothness:  First, the velocity
parameterization can be designed to exclude short-wavelength features (e.g. by
controlling the node spacing in a spline representation). Second, the the solution can
be forced to have a prescribed spatial correlation function, by including some measure
of the spatial correlation of the solution in the definition of least-square error.  Thus
the simple definition of the traveltime error:

E = ΣiN (Tiobs – Tipre)2 (Eqn. 1)
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where Tiobs and Tipre are the N observed and predicted traveltimes, respectively, can be
augmented to:

 E = ΣiN (Tiobs – Tipre)2 +  ε2 ΣiL ΣjL C−1ij ∆vi  ∆vj (Eqn. 2)

Here L is the number of nodes and ε2 is the so-called “damping parameter”. With a
proper choice of the matrix, C, the second term in Eqn. 2 becomes a measure of how
quickly the velocity perturbations vary with position.  Abers (1994) suggests that C
should be chosen so that Cij exponentially decreases with the geometrical distance
between nodes i and j.   The solution exactly minimizes the traveltime error when
ε2=0, and becomes very smooth as  ε2→∞. At some intermediate value of ε2 (usually
found by trial and error) provides a solution that is smooth and comes close to
minimizing the least-squares traveltime error. Raytrace3d implements only the first
method of controlling model smoothness.  However, since several nodes can be
grouped into the same model parameter, ∆v can be made arbitrarily smoother than v0.

Raytrace3d also provides a limited form of damping, by defining the error as:

 E = ΣiN (Tiobs – Tipre)2 +  ε2 ΣiM ∆mi
2 (Eqn. 3)

where ∆mi are the model M parameters.  A large damping parameter simply tends to
drive the ∆m's to zero, that is to select a solution that is small. Selective damping of
some model parameters over others can be implemented by judicious choice of the
coefficients that define the model parameters. Consider, for example, two model
parameters, each consisting of the sum of three nodal velocities, such as
∆m1=0.2∆v3+0.6∆v4+0.2∆v5 and ∆m2=2∆v6+6∆v7+2∆v8. Each have the same ratio of
coefficients (i.e. 2:6:2) and impose thus impose the same smoothness on the three
corresponding nodal velocities.  But the damping more strongly effects the first set of
nodal velocities, since their coefficients are smaller.

5. Finally, the designer of any software must make some practical choices about its
user interface, and especially the degree to which it utilizes interactive graphics.
Raytrace3d, at the “low end” of this spectrum, is a command-line oriented program
that accepts and produced only text files. Visualization must therefore be provided by
other software, such as Wessel and Smith's (1991) “GMT” Generic Mapping Tools.
Raytrace3d is available by anonymous FTP at the URL:

ftp://ftp.ldeo.columbia.edu/pub/menke/raytrace3d.tar.Z

Velocity Ratio Case Study

Poisson's ratio, ν, or equivalently, the ratio of compressional to shear wave velocity,
α/β, (with α2/β2=2(1−ν)/(1−2ν)) has long been understood to provide an important
clue about the temperature of the rocks within the earth.  The ideal Poisson solid has a
ratio of α/β =√3≈1.73. Most rock-forming minerals have ratios close to this ideal (e.g.
quartz, 1.47; plagioclase (An29), 1.83; augite 1.72; diposide, 1.76) (Christensen
1982). Rocks are observed to have greater variability, probably because of weathering
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and jointing, but are generally in the 1.1−1.9 range (Clark 1996, Table 7.16). On the
other hand, rocks near their melting point generally have much higher ratios, typically
in excess of 1.9, with the limiting value of α/β →∞ (ν=0.5) reached for fully fluid
melts.  Measurements of velocity ratio have been used to infer (or rule out) partial
melting and magma ponding within the crust and shallow mantle (e.g. Gebrande et al.
1980; Menke et al., 1996).

Standard body wave tomography can be used to image both α and β within the earth,
as long as compressional and shear wave traveltimes are available.  However,the
ratioing of separately-produced compressional wave, α, and shear wave, β, images to
produce an image of α/β can be an unstable process. The two traveltime datasets often
have somewhat different ray coverage and noise, owing to the difficulty of adequately
exciting shear waves with explosive sources and to the difficulty of determining the
traveltime of secondary phases such as the shear wave.  Individually-produced images
of compressional and shear wave velocity are thus subject to different resolution and
error, and will have artifacts in different places.  Forming a ratio of two such images
only further magnifies these problems.

Shaw (1994) puts forward the idea of a simultaneous inversion for compressional
velocity, α, and compressional to shear wave velocity ratio, α/β.  The idea here is to
separately control the damping of the the two parameters, so as to select models that
favor heterogeneity in α over heterogeneity in α/β (this is sometimes referred to
“squeezing” α/β). The resulting α/β image then has the interpretation of the one with
simplest variability in ratio that is consistent with the data.

We illustrate this procedure with a synthetic inversion, using “data” calculated from a
hypothetical crustal model (the “true model”) containing both variability in α and α/β.
The true model has α and α/β defined in a 50×50×10 km region containing 11×11×11
nodes.  The model contains a broad compressional velocity anomaly, with a
maximum amplitude of ∆α=−1 km/s, superimposed on a one-dimensional structure
that monotonically increases with depth.  The shear wave velocity has a broad, co-
located low-velocity anomaly, with α/β=1.75, also superimposed on a simple one-
dimensional structure with α/β=1.83 in the uppermost layers. A 21×21 array of
receivers is placed on the top surface of the model, and 10 compressional and 10 shear
sources are placed in a ring around them at 3 km depth (Fig. 2, top).  Only 30% of the
compressional and shear sources are co-located.  A total of 4096 P wave traveltimes
and 4122 shear wave traveltimes are computed for combinations of these sources and
receivers.  Traveltimes are then perturbed with Gaussian-distributed random noise
with a standard deviation of 0.05s for P waves and 0.10s for S waves, to simulate
measurement error.  The ray coverage (Fig. 2, bottom) has some interesting
deficiencies typical of many crustal imaging experiments:  Relatively few rays sample
the lower part of the crust, owing to the source-receiver offsets being limited to less
than 25 km, and those that do are all propagating sub-horizontally; All the rays
traverse the upper crust, but owing to the depth of the sources, most of them cross it
sub-vertically.

We perform both individual and joint inversions (Fig. 3).  The individual α and β
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inversions each have 343 model parameter, the velocity of the nodes within the
central part of the model (i.e. |x| and |y| less than 15 km).  The joint inversion has
double this number of model parameters, since both α and α/β are being determined
at each node. The individual inversions each have a spatially-homogeneous damping
of 5%, and converge in three iterations when begun with a one-dimensional starting
model.  The joint inversion has a spatially-homogenous damping of 5% for α and
50% for α/β, and converges in 6 iterations when begun with a one-dimensional
starting model that has homogenous α/β.  All inversions reduce the traveltime error,
measured with respect to the stating model, by similar amounts – in the 83-85%
range.  This degree of noise reduction corresponds to a slightly “overfit” model, as the
signal-to-noise ratio of the data is about 3:1.

All inversions produce compressional and shear wave images that look – at least
superficially – like the true model.  The position and shape of the low velocity zone is
captured remarkably well.  A close examination yields some minor differences
between the individual-inversion α and β images and their true counterparts. In
particular, there are small differences in the shape of the periphery of the low velocity
zone, with the inversions tending to have “shoulders” that are not present in the true
model. These small differences yield rather large fluctuations in the ratio, α/β, at the
shoulders when the two images are ratioed.  The joint inversion produces a smoother
image that correctly captures the low values of α/β at the center of the model.

Interestingly, neither of the α/β images correctly capture the lateral continuity of the
high α/β region at the top of the true model.  Both image it as a discontinuous patches
that in three dimensions form a ring about the center of the model.  This ring results
from the interaction of two distinct limitations of the data.  First, the receivers are
limited to the central part of the model. No traveltime data can constrain the structure
at the edges of the model, so the α/β there defaults to the intermediate value assigned
to the starting model there.  This effect forms the outer boundary of the ring. Second,
near the center of the model most rays traverse the shallow crust sub-vertically,
interacting with both the upper crust (high α/β) and the low-velocity zone (with low
α/β) beneath it.  Vertical smearing tends to reduce the contrast in α/β in the center of
the model, forming the inner boundary of the ring.

Finally we note that the close correspondence of the inverted and true lower crustal
structure is only coincidental. Very few, if any, rays traverse this region, so its
properties are unconstrained by the data.  The bottom of the low velocity zone is
simply being controlled by the starting model, which has no anomalous structure at
this depth.

Moho Topography Case Study

Many seismic refraction experiments record excellent Moho-reflected phases, such a
PmP and SmS (e.g. Fig. 1).  The traveltimes of these phases are influenced by both
the thickness of the crust and by its velocity structure.  Thus, for instance, a 1 km
downward deflection of Moho increases the traveltime of a normally-incident PmP
wave by 0.29s, assuming a lower crustal velocity of 7 km/s.  Similarly, a 2.5 km thick
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low velocity zone (with ∆α=−2 km/s) in the lower crust also increases the PmP
traveltime by the same amount.  The problem is that these two structures might be
given rather different physical interpretations. For instance, if the region being studied
was a mid-ocean ridge, then a downward deflection of Moho might be associated with
anomalously high crustal production rate, while a low velocity zone might be
associated with a partially-molten zone just above Moho.  An important issue, then, is
whether a tomographic inversion that combines both crustal-turning P waves and
Moho-reflected PmP waves can distinguish Moho topography from lower crustal
velocity heterogeneity.

We examine this issue with a synthetic inversion, using “data” calculated from a
hypothetical crustal model (the “true model”) containing both long-wavelength
variability in crustal velocity and Moho topography. The true model has velocity and
Moho depth defined in a 50×50×15 km region containing 21×21×11 nodes.  The
model contains a broad compressional velocity anomaly, centered in the mid-crust at
the center of the model, with a maximum amplitude of ∆α=−1 km/s.  This anomaly  is
superimposed on a one-dimensional structure that monotonically increases with
depth.  The Moho has a broad, 2 km deep downward deflection, also centered on the
center of the model. A 41×41grid of receivers are placed on the top surface of the
model, and a 21×21 grid of sources are placed at 1.5 km depth (Fig. 4, top).  About
25% of the possible source-receivers paths are selected on a random basis, yielding a
total of 7370 crustal-turning P wave traveltimes and 6921 Moho-reflected PmP waves
traveltimes.  These traveltimes are then perturbed with Gaussian-distributed random
noise with a standard deviation of 0.05s.  The ray coverage (Fig. 4, bottom) is dense,
but – as in common with crustal-imaging experiments - has a significant deficiency:
Relatively few crustal P waves sample the lower part of the crust, owing to the
source-receiver offsets being limited to less than 25 km, and those that do are all
propagating sub-horizontally.

We perform a joint inversions for crustal velocity structure and Moho depth (Fig. 5).
Crustal velocity is represented by 1521 model parameter, the velocity of the nodes
within the central part of the model (i.e. |x| and |y| less than 15 km).  The velocity
model parameters extend all the way down to Moho. Moho depth is represented by
169 model parameters, the vertical position of each node on the reflecting interface.
A suite of inversions are performed, all with velocity damping parameters fixed at
1%, but with the topography damping parameter ranging from 0.1% (i.e. squeezing
crustal velocity) to 10% (squeezing Moho topography).  The inversions required two
iterations to converge, when begun with a one-dimensional starting model that has a
flat Moho. The two extreme cases of these inversions (Fig. 5) both reduce the
traveltime error  by similar amounts (71-75%), about as much as can be expected
given the 4:1 signal-to-noise ratio.  Unfortunately, the inversions yield rather different
estimates of crustal velocity structure and Moho topography.

The velocity-squeezed inversion comes closest to reproducing the true model.  It
captures both the 2 km depression of Moho and the generally slow crustal velocities
in the central part of the model.  Some small oscillations of isovelocity surfaces are
present in the uppermost crust.  These result from an interaction between the high
damping and the relatively coarse source spacing, which drive the velocity
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perturbations to small values in the poorly sampled regions of the upper crust that are
between between the sources.  The topography-squeezed inversion fits the traveltime
nearly as well as the velocity-squeezed inversion (71% compared to 75%), but has a
nearly flat Moho.  Anomalously slow PmP traveltimes are produced by a large
amplitude low velocity zone in the central part of the lower crust.  This zone has a
velocity of 5.6 km/s, about 20% less than the 7 km/s “background” velocity at that
depth – a value that is well within the range that might be expected by a lower-crustal
partial melt zone.  This imaging experiment fails to discriminate between the Moho
topography and lower-crustal velocity.

The experimental geometry can be improved by increasing the aperture of the source
and receiver arrays, so that the lower part of the crust is better-sampled by crustal
turning waves.  Several practical considerations limit the usefulness of this approach,
however:  The first is the difficulty of precisely measuring crustal P wave traveltimes
at the ranges greater than the distance at which the mantle-turning Pn phase becomes
the first arrival. In many crustal models, the crustal P wave turns at a depth of about
half the crustal thickness at this “cross-over” range, so the lower half of the crust is
usually poorly sampled.  The second consideration is the practical difficulty in
distinguishing P and PmP at extreme ranges where crustal P arrives just slightly
before PmP.  The problem is accentuated by the generally low crustal P amplitudes,
that are caused by the generally low lower  crustal velocity gradients, and the
generally high PmP amplitudes, caused by the large reflection coefficients at near-
grazing incidence, both of which conspire to make the onset of crustal P hard to spot.

Plume Shape Case Study

Since its introduction by Aki et al. (1976), teleseismic tomography has been a
standard tool for mapping out the velocity structure of the uppermost mantle.  This
procedure uses waves from distant earthquakes (teleseisms), which are presumed to
have simple (e.g. planar) wavefronts as they impinge upon the bottom of a regional
model of the earth's crust and upper mantle.  Any departure from this simple shape
detected by stations on the earth's surface is assumed to be due to velocity
heterogeneity within the model.  Wave diffraction, which tends to smooth out
wavefronts as they propagate (a process often referred to as “wavefront healing”) and
the fact that the lower mantle has relatively subdued velocity heterogeneities, are
often cited in support for the assumption of an initially simple wavefront.
The initial backazimuth and angle of incidence of the teleseismic wavefront can be
predicted from the known location of the earthquake and a set of standard tables such
as IASPEI 1991 (Kennett, 1991).  Such a prediction is imperfect. The IASPEI tables
are global averages and omit perturbations in propagation direction caused by lateral
heterogeneity. However, the error is usually assumed to be negligible.  The initial
arrival time of the teleseisms, however, is much more uncertain, owing both to the
uncertainty in earthquake origin time and uncertainty in the traveltime of the wave
across the earth.  As a result, the arrival time is usually considered unknown.

The overall traveltime of the wave through the model cannot be determined without
knowledge of its arrival time at the bottom of the model. Teleseismic tomography
must rely only upon “relative” traveltime residuals, meaning residuals measured with
respect to a best-fitting planar wavefront of known horizontal phase velocity but
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unknown arrival time.  This is a very serious limitation: All vertically-stratified earth
models (e.g. where velocity, v(z) varies only with depth, z) have zero residuals in this
sense, since they do not perturb the planarity of the wavefront nor change its
horizontal phase velocity.  From the viewpoint of teleseismic tomography, all
vertically-stratified earth models are the same. Furthermore, if a three-dimensional
model is viewed as the sum of a vertically-stratified part and small perturbation, v(x,
y,z)=v0(z)+∆v(x,y,z), then teleseismic tomography can resolve only ∆v and not v0 (at
least if ∆v is not so strong as to significantly perturb the raypaths from their shape in
the vertically-stratified model, v0(z)).  Unfortunately, models with the same ∆v but
different v0 's can have quite different appearances (Fig. 6).

Teleseismic tomography has been used to investigate the mantle plumes, such as
beneath Iceland (Tryggvason, 1997; Wolfe et al. 1997; Allen 2001) and Yellowstone
(Saltzer and Humphreys, 1997).  The shape and depth extend of these plumes, and the
way in which these properties are related to geodynamic processes has been a critical
issue in these discussion, often engendering considerable controversy (e.g. Foulger et
al., 2000).  We present here a case study which illustrates techniques for examining
the robustness of estimate of estimates of plume shape and depth distribution.

The true model has a 30 km thick crust and an upper mantle defined in a
400×400×255 km region containing 41×41×11 nodes.  The mantle contains a broad
compressional velocity anomaly with a maximum amplitude of −3%.  The anomaly is
circular in cross-section, and uniform with depth (in the sense that ∆v is a function
only of horizontal position, (x,y)). This anomaly  is superimposed on a one-
dimensional structure that monotonically increases with depth.  A 5×5 grid of
receivers are placed on the top surface of the model, and  288 teleseisms (72 azimuths
and 4 angles of incidence) are used to compute 5700 traveltimes (Fig. 7, top).  These
traveltimes are then perturbed with Gaussian-distributed random noise with a standard
deviation of 0.01s.  The ray coverage (Fig. 7, bottom) is dense, but – as in common
with teleseismic tomography experiments - has a significant deficiency:  All of the
rays are sub-horizontal, with the least vertical ray having an angle of incidence of 32°
(i.e. the closest teleseism is about 50° away).

We perform two types of inversions for mantle velocity structure (Fig. 8).

In the first suite of three inversions, we investigate the ability of the data to resolve
the depth distribution of the anomaly, using a depth-squeezing method suggested by
Lerner-Lam and Jordan (1987).  The velocity is represented by 1089 model
parameter, the velocity of the nodes within the central part of the model (i.e. |x| and |y|
less than 150 km and z beneath the Moho).  Three inversions are performed, the first
with a spatially uniform damping of 5%, the second with damping that decreases by a
factor of 10 with depth and the third with damping that increases by a factor of 10
with depth.  The later two inversion squeeze the velocity perturbations deeper and
shallower depths in the model, respectively.  The models all fit the data equally well,
reducing the traveltime residuals by 78% - a much as can be expected given the data's
4:1 signal to noise ratio. All three inversions image an anomaly in the center of the
model (Fig. 8C−8E), but differ significantly in estimating its depth distribution (Fig.
9).  The centroid depths of the anomaly are quite different in the three cases, 126 km
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for the uniformly damped case (which is close to the true value), 137 km for the
“squeezed-deep” inversion, and 103 km for the “squeezed-shallow” inversion.  Thus
this teleseismic inversion is of limited useful in studies of the depth distribution of the
plume's velocity structure.

The inversion could be improved somewhat by including teleseisms with less steep
angles of incidence.  However, such teleseisms turn more shallowly in the mantle and
are more influences by upper mantle heterogeneity outside of the modeled region.

Another aspect of plume shape with geodynamical implications is its departure from
“axial shape”, meaning the presence of any narrowing or flaring out of the plume with
depth.  A perfectly axial plume would have a velocity perturbation that was a function
of horizontal position only, i.e. ∆v(x,y,z)→∆v(x,y); its strength does not change with
depth.  The true plume in the above example has this property.  We therefore
investigate how to test for departures from axial shape.

We suggest that a “vertical mode” parameterization of velocity is appropriate for such
a test.  The velocity perturbation along vertical columns of nodes is represented by
truncated modal expansion:

∆v(x,y,z) = Σi=0N ai(x,y) pi(z) Eqn. 4.

Here pi(z) are a set of N functions of depth, z, and ai(x,y) are corresponding
coefficients.  They represent the depth behavior of ∆v at any given horizontal
position, (x, y). We assume that the pi(z) are ordered by increasing complexity, with
p0(z) being the constant function (i.e. p0(z)=1). An axial structure therefore has non-
zero a0, with all higher order coefficients being zero. Many different choices of the
pi(z) are acceptable; we use harmonic functions (e.g. sines and cosines), so that Eqn. 4
is a truncated Fourier series.  We then preferentially damp the higher order
coefficients, so as to drive the inversion towards an axial solution.  If the resulting
solution fits the data and has negligible higher-order coefficients, then we conclude
that the data cannot rule out an axial plume (Fig. 8F).  If higher-order coefficients
play are significant, we conclude that the data require non-axial behavior.

Earthquake Location Case Study

While the discussion above emphasizes the role of raytracing and traveltime
calculation in seismic tomography, they are also a fundamental part of most
earthquake location algorithms.  Earthquake location typically relies on some form of
Geiger's Method (see Section A.26), in which the location and origin time of an
earthquake are determined by matching (usually in the least-squared sense) the
observed and predicted arrival times of seismic waves.  As we have discussed above,
ray theory provides one method of calculating the traveltime, and hence the predicted
arrival time of a seismic wave. In years past, most earthquakes were located in very
simple earth models consisting of a stack of homogeneous layers, using software such
as Klein's (1978) HYPOINVERSE program. Raytracing is not explicitly needed in
such cases, since traveltimes can be calculated using a simple formula. Rays figure
only in its derivation. This simplicity ends as seismologists begin to employ earth
models with three-dimensional heterogeneity, where traveltime calculation is a much
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more difficult problem.  The linkage between earthquake location and tomography
has also grown because of the desire to locate earthquakes using earth models that are
themselves the product of tomography. Compatibility between the two procedures on
issues, say, of model representation, is then a practical necessity.

The case study that we present here examines the effect of using a laterally
homogeneous model to locate earthquakes, when they actually occurred in a laterally
heterogeneous earth.  We choose a 50×50×25 km heterogeneous model with two
commonly-encountered forms of heterogeneity (Fig. 10B):  The upper crust , with a
mean compressional velocity of 3.1 km/s, thickens from 0.64 km at the left hand side
of the model to 1.35 km on the right; and the mid-crust has a high compressional
velocity dome with an amplitude of 3%. The homogeneous model (Fig. 10D) is a
laterally-averaged version of the heterogeneous one.  A rectangular 40×100 grid of
earthquakes (Fig. 10C) are aligned on the x−z plane at y=1.75, extend from 2 to 10
km depth, and have a regular spacing of 0.2 km.  Traveltimes are computed by
raytracing from each earthquake to an array of nine receivers (Fig. 10A).  The
traveltime data set consists of a total of 31277 P wave traveltimes and an equal
number of S wave traveltimes (created using the assumption of a constant
compressional to shear wave velocity ratio of 1.76).  This number of rays corresponds
to about 87% of the theoretical total of 36000, since some of the longest source-
receiver distances were excluded from the calculations.

We first compute a set of locations using the laterally homogeneous model, a data set
consisting of P and S traveltimes, and starting locations that were based on perturbing
their x, y and z coordinates with random numbers generated by a Gaussian
distribution with a mean of zero and a standard deviation of 1 km.  Eight iteration of
Geiger's Method (se Section A.26) are needed to reduce to the traveltime residuals
from an initial value of 0.22s to a final value of 0.005s. The general pattern of
earthquakes (that is, their lying of a retangular grid) is well recovered (Fig. 10E). On
the fine scale, however, systematic mislocation with an amplitude of about  (<0.1 km)
occurs.  The pattern of mislocation is spatially coherent, at least at scales of a few
kilometers, but complicated.

There has been much recent interest in performing earthquake locations using only
differential traveltimes from nearby earthquakes observed at a common station. The
advantages of this technique (which is often called the double−difference method) is
that differential traveltimes can be measured very accurately using waveform cross-
correlation techniques, and they can be predicted more accurately than absolute
traveltimes because errors in the velocity model tend to cancel out when traveltimes
of neighboring events are subtracted (e.g. Slunga et al.1995, Waldhauser and
Ellsworth 2000). The disadvantage is that much of the information in the traveltime
data that fixes the absolute location of each earthquake has been excluded from the
location process.  The location process thus emphasizes the spatial relationship of the
earthquakes to one another, rather than their absolute position in a fixed reference
frame.

We demonstrate the double−difference method by creating a data set of 142303
differential P traveltimes. Each differential traveltime is for two events with true
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locations separated by no more than 0.5 km observed on a common station. The
earthquakes are located with these data, with the laterally homogeneous model, and
with the same randomly−perturbed starting locations as the previous case. Eleven
iteration of Geiger's Method (see Section A.27) are needed to reduce the differential
traveltime residuals from an initial value of 0.40s to a final value of 0.001s. The
general pattern of earthquakes (that is, their lying of a retangular grid) is well
recovered, except that large (>1 km) mislocations occur along the edges of the grid
(Fig. 10F). This problem is due to the fewer data constraining the location of these
earthquakes, owing both to the position of the of the grid (i.e., fewer close neighbors)
and to our having excluded traveltime data for some of the largest source-receiver
offsets. Even so, these mislocations are highly correlated between neigboring
earthquakes, so for the most part the relative locations are being reliably recovered.
The earthquakes in the central part of the grid  �  where the data coverage is the best –
are located to greater accuracy than the previous case, by a factor of about two (Fig.
11). Furthermore, the mislocation errors are mostly vertical, whereas in the previous
case the error tended to have a significant horizontal component).

Conclusions

We have presented three case studies of traveltime tomography relevant to the
imaging crust and upper mantle using regional arrays.  The first case study
investigates the imaging of Poisson's ratio using measurements of compressional and
shear wave traveltimes.  Inversions schemes that jointly fit both types of traveltime
data and that selectively damp the compressional to shear wave velocity ratio are
shown to be very effective. The second case study focuses on the ability of joint
inversions of crustal and Moho-reflected wave traveltimes to image both crustal
velocity structure and Moho topography.  The ability of this kind of tomography to
distinguish Moho topography and lower crustal heterogeneity is shown to be poor.
The third case study examines the ability of teleseismic tomography to determine the
shape of a mantle plume. A new test for detecting departures from an axial shape is
proposed and tested. It is based on squeezing the higher order coefficients in a modal
expansion for vertical velocity profile. Finally, we demonstrate some of the the
advantages and limitations of the double-difference earthquake location technique,
when it is used to locate earthquakes that have occurred in laterally heterogeneous
structures.

Appendix
Seismic Raytracing and Tomography in a Three-Dimensional Tetrahedral Mesh

A.1. Coordinate system.  We use a right handed Cartesian coordinate system where
position is described by a 3-vector x=(x,y,z)T, where T indicates transpose. As usual,
we identify z as the “vertical-up” direction.

A Cartesian coordinate system is most naturally applied to models of relatively small
portions of the earth, say less than 100-200 km in scale, since the earth can be
approximated as flat on that scale.  It can also be used for somewhat larger models,
say up to 1000 km across, by the simple artifice of building the curvature of the earth
into the models.  But beyond that scale spherical coordinates are clearly more
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appropriate.

A.2 The tetrahedral mesh.  The material parameters of the seismic model are
specified at nodes. Let the total number of nodes be L, with node i being at position,
x(i), and having associated material parameters, such as seismic velocity, v(i). In
general, it is possible first to pick a set of nodes and then to organize them into a set
of tetrahedra that completely fill – without overlap - the volume of the model.
Delaunay tetrahedralization, for instance, is a systematic method for finding the most
“compact” set of such tetrahedra.  Our own experience, however, is that completely
disorganized meshes, where the nodes are at randomly chosen points, are difficult to
conceptualize and manipulate. We prefer more organized meshes that have distinct
sheets of nodes, at least some of which have a direct correspondence to interfaces
within the earth (e.g. sea floor, Moho, etc.).

The Cartesian mesh, in which nodes are regularly spaced in (x, y, z), is the easiest to
construct.  Each parallelipiped of 8 nodes can easily be divided up into six
tetrahedron, in a fashion such that its faces exactly match the faces of adjoining
parallelipipeds (Fig. A.2.1).

The key property of the Cartesian mesh that allows rapid tetrahedralization is the
organization of the nodes by rows, columns and tiers, and not their regular spacing.
Irregular meshes which have this underlying organization (i.e. the nodes at positions
x(i)(j)(k), where i, j, k are indices) are equally easy to tetrahedralize. We find these
“distorted” meshes particularly useful, because they permit the representation of
interfaces with varying topography (Fig. A.2.2).

A.3 Information associated with tetrahedra. The seismic model consists of both a
list of nodes and a list of tetrahedra.  Our experience is that at least the following
information should to be maintained for each tetrahedron: which nodes lie at each of
its four vertices, the outward-facing unit normals of each of its four faces, the
tetrahedra (if any) that adjoin each of its four faces. We note that if a face of a
tetrahedron contains vertices x(j), x(j), and x(k), then the (x(j)−x(i)) cross (x(k)−x(i)) is
normal to the face.  The sign of this normal should be chosen to make it point way
from the excluded face, so that it is outward-pointing.

Maintaining, for each node, a list of tetrahedra that contain it as a vertex also
facilitates calculations.  In cases where interfaces are of interest, the interfaces can be
enumerated.  A node's interface (if any) should then be maintained, as should the
interface (if any) of each face of each tetrahedron (where a face is taken to be on the
interface if all three of its vertices are on it).

A.4 Interpolation within the Tetrahedron. Let the four vertices of the tetrahedron
be located at position {x(i), i=1, ... 4} and have corresponding seismic velocity {v(i),
i=1, ... 4}. Within the tetrahedron, the velocity is assumed to be a linear function of
position:

v(x) = a1 x + a2 y +a3 z+ a4 (Eqn. A.4.1)

The 4-vector of coefficients a=[a1, a2, a3, a4]T can be found by solving the 4×4 linear
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system:

v(i) = a1 x(i) + a2 y(i) + a3 z(i) + a4   ;   i=1, ... 4
or
v = M dot a (Eqn. A.4.2)

(where v is a 4-vector of the four nodal velocities and M is a 4×4 matrix containing
node positions) using any standard method (e.g. Gaussian elimination or by simple
matrix inversion, a = M-1 dot v). Note that the velocity gradient is just the 3-vector
g=[a1, a2, a3]T.

A.5 Testing whether a point is within a tetrahedron. A tetrahedron has four faces,
each of which contains three of its four vertices. A face can be labeled by the index of
the vertex it excludes (i.e. face i does not contain vertex x(i)).  A point, x, lies within
the tetrahedron if, for all four faces, it lies on the same side of the face as the excluded
vertex.  The equation f(x)=0 that defines each face is needed to perform this test.  The
standard form of the equation of a plane is f(x)=Ax+By+Cz+D=0, where (A, B, C, D)
are constants and where one of the coefficients (e.g. D) is arbitrarily set to unity. The
remaining constants could be computed by solving the 3x3 linear system:

A x(i) + B y(i) + Cz(i)  = −1 (Eqn A.5.1)

where {x(i), i=1,2,3} lie on the plane.  However, the equivalent form, f(x)=(x−x(i)) dot
(x(j)−x(i)) cross (x(k)−x(i)) = 0 (where x(i), x(j) and x(k) lie on the plane) is in practice
more useful, since the constants (A, B, C, D) never need to be computed.
Furthermore, this equation has a simple geometrical interpretation: The vectors (x(j)−
x(i)) and (x(k)−x(i)) both lie in the plane, so their cross product is normal to it.  The dot
product with (x−x(i)) is thus proportional to the perpendicular distance of x from the
plane. (It would be exactly distance, if the cross product were normalized to unit
length).

Two points x and x(i) lie on the same side of a plane if f(x) has the same sign as f(x(i)),
or equivalently if f(x)f(x(i))>0.

A.6. Finding the tetrahedron that contains an arbitrary point. One could, of
course, exhaustively test whether the point, x, lies in each of the tetrahedra of the
model, but more efficient strategies can reduce computational effort.  We suggest the
following strategy, which is based on the presumption that most calculations will use
“neighboring” x's: One should always keep track of the last tetrahedron that was
accessed, and test whether x is within it.  If it isn't, then form a unit vector that points
from the center of the tetrahedron (i.e. xc=(x(1)+x(2)+x(3)+x(4))/4 to x, compare this
vector with the outward-facing unit normals of each of the tetrahedron's four face,
select the one in which is most nearly parallel (in the sense of maximizing  xc  dot x),
move to the tetrahedron adjoining that face and repeat the test. If it fails, then iterate
the process until the tetrahedron is found or the surface of the model is encountered.
An exhaustive search may be necessary in the later case, since the iterative search can
sometimes fail.
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A.7 Raytracing in a linear medium.  Suppose that a seismic ray starts within a
tetrahedron at a point, x0, with ray tangent, t.  The velocity varies only in one direction
given by g (the velocity gradient), so the ray is confined to the t-g plane. This
geometry is best analyzed in a rotated (x',y',z') coordinate system in which the ray
propagates in x'-z' (with z' is parallel to g and x' increases with t).  The situation is
now seen to be equivalent to a ray propagating in a medium with a linear velocity in
z'.  A ray in such medium is known to have a path that is exactly an arc of a circle
(Menke and Abbott, 1989) with a  radius of curvature R=1/(s|g|) (Fig. A.7.1). Here s
is the phase slowness in the x' direction, which is tx'/v(x0).  The center of the circle is a
distance R from x in a direction perpendicular to t, which is to say at position (xc', yc',
zc') = (x0 '+Rtz, y0 ', z0 '−Rtx). We note that if the ray were to cross the z' of the center of
the circle, its arc would become vertical (with respect to z'), so by Snell's law the
velocity at that level must be zero.  Hence the velocity at the center of the circle is
zero. (This point would normally be outside of the tetrahedron, so no physical ray
would ever cross that z' level).  We will therefore add a coordinate shift that moves
the origin of the primed coordinate system to the circle's center.

A.8 Coordinate Rotations and Shifts. In A.7 above, we need to rotate a coordinate
system to (z', y', z') axes parallel to ( (g cross t) cross g, g cross t, g) and then shift the
origin by (xc', yc', zc'). Let v1, v2, v3 be unit vectors parallel to the primed axes. Then
the transformation is x'=Sx–x'c and the inverse transformation is given by x=ST(x'+x'c)
with S=[v1, v2, v3]T.

A.9 Finding the exit face.  Suppose that in the primed coordinate system a face has
an equation ax'+by'+cz'+d=0.  The ray lies in the plane of y=0, so finding the the
intersection point (if any) of the ray with the face is equivalent to finding the
intersection point of the line, ax'+cz'+d=0 with a circle of radius, R, centered at the
origin (Fig. A.9.1). (If both a and c are zero, no intersection point exists).

Suppose that we construct a second line that passes through the origin and which is
the perpendicular bisector of the first.  The bisector has equation, −cx'+az=0, and
intersection point, (x',z')=−d(a2+c2)−1/2(a,c).  This intersection point is a distance,
D=|d|(a2+c2)−1/2 away from the origin in the direction,  t=[−da,−dc]T|d|−1(a2+c2)−1/2.  The
polar angle, ψ, from the z' axis to t can be found using the relation t=(sin(ψ),cos(ψ)]T.

Now suppose that we rotate the coordinate system so that the t direction becomes the
new z” axis.  The problem has mirror symmetry about this axis, with the two
intersection points of the line and the circle straddling the z” axis.  The equation of the
line is just z'=D, where D is nonnegative.  The equation of the circle is z”=Rcos(φ),
where φ is the polar angle with respect to the z” axis.  One intersection point occurs at
angle, φ=cos−1(D/R), where φ is in the interval [0,π/2]. The other is at −φ.  If D/R>1,
then the circle and the line do not intersect. In the original primed coordinate system
the intersection points are at polar angles θ=ψ±φ.

We accumulate a list of intersection points of the ray with each face of the
tetrahedron. Only one of these intersection points is the exit point of the ray – the one
with the smallest but positive θ−θ0 that lies within the tetrahedron. If the starting point
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of the ray is on a face, then this entry point is the solution θ=θ0 and care must be taken
to avoid mistaking it with an exit point, especially in the presence of numerical error.

The ray exit point x'=[Rsin(θ), 0, Rcos(θ)]T and its tangent t'=[Rsin(θ), 0, −Rcos(θ)]
can now be calculated and transformed back into the unprimed coordinate system.

A.10. Traveltime Through a Tetrahedron.  The traveltime, T=∫ray ds/v, where s is
arclength along the ray.  In the rotated and shifted coordinate system, we have
ds=Rdθ and v=|g|Rcos(θ) and this integral becomes:

  T = (1/|g|)  ∫θ0
θ dθ  / cos(θ) (Eqn A.10.1)

where the indefinite integral is (Selby, 1973, Integral 294):

∫ dθ  / cos(θ) = ln | tan(θ/2+π/4) | (Eqn. A.10.2)

A.11 Attenuation through a Tetrahedron. Suppose that anelastic attenuation of the
earth is quantified by a reciprocal quality factor Q−1.  The attenuation, T*, along the
ray is then defined as:

Τ∗ = ∫ rayQ−1  dT
= ∫ ray Q

−1/v ds
= (1/|g|)  ∫θ0

θ Q−1  dθ/cos(θ) (Eqn. A.11.1)

We note that sometimes attenuation data is represented in terms of the “path averaged
reciprocal quality factor' <1/Q> = T*/T. Now let the reciprocal quality factor be
represented as a linear function of position within the tetrahedron. On the (x', z')
plane, it varies as Q−1  = q1x' + q20 + q3z' + q4.  Substitution into Eqn A.11.1 yields:

T* = (q1R/|g|) ∫θ0
θ tan(θ) dθ + 0 q2 +

+ (q3R*/|g|) ∫θ0
θ  dθ

+ (q4/|g|) ∫θ0
θ dθ / cos(θ)

= q dot h (Eqn. A.11.2)

Here h is a 4-vector of the definite integrals. The first integral is the same as Eqn.
A.11.2, above, the second is trivial and the third is (Selby, 1973, Integral 292):

∫  tan(θ)  dθ = − ln | cos(θ) | (Eqn. A.11.3)

A.12 Other ray integrals.  We mention three other ray integrals that are sometimes
of importance:

Ι1 = ∫ ray (ax'+bz'+c)  ds
= aR2 ∫θ0

θ sin(θ) dθ
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+ bR2 ∫θ0
θ cos(θ) dθ

+ cR∫θ0
θ dθ (Eqn. A.12.1)

Ι2 = ∫ ray (ax'+bz'+c)  ds / v2

= (a/|g|2)∫θ0
θ sin(θ)/cos2(θ) dθ

+ (b/|g|2) ∫θ0
θ 1/cos(θ) dθ

+ [c/(R|g|2)] ∫θ0
θ 1/cos2(θ) dθ (Eqn A.12.2)

I3 = ∫ ray ds / (ax'+bz'+c) 

= ∫  dθ / (a sin(θ) + b cos(θ) + c/R)

The indefinite integrals are given by (Selby, 1973, Integrals 290, 291, 326, 312, 342)

∫ sin(θ) dθ = −cos(θ) (Eqn. A.12.3)

∫ cos(θ) dθ = sin(θ) (Eqn. A.12.4)

∫ sin(θ)/cos2(θ) dθ = 1/cos(θ) (Eqn. A.12.5)

∫ 1/cos2(θ) dθ = tan(θ) (Eqn. A.12.6)

∫  dθ / (a sin(θ) + b cos(θ) + c/R) 

= (1/D) ln[ {a−D+((c/R)−b)tan(θ/2)} / {a+D+((c/R)−b)tan(θ/2)} ]

if (c/R)2<(a2+b2) and (c/R)≠b

= (2/E) tan−1[ {(a+((c/R)-b)tan(θ/2)} / E ]

if (c/R)2>a2+b2

= (1/(c/R)) [(c/R)−(a+b)cos(θ)−(a−b)sin(θ)]/
[(c/R)−(a−b)cos(θ)+(a+b)sin(θ)]

if (c/R)2=a2+b2 and (c/R)≠b

with D=(a2+b2−(c/R)2)1/2 and E=((c/R)2−a2-b2)1/2 (Eqn. A.12.7)

A.13. Raytracing to a Specific Interface. The raytracing procedure begins by
specifying a starting position and direction for the ray. The tetrahedron inclosing this
point is found, and the ray is traced via the above methodology to its exit face.  If this
face is on the specified interface, then the complete ray has been found.  Otherwise
the exit point and tangent becomes the entry point and tangent in the adjacent
tetrahedron and the process is repeated.  We note that having maintained adjacency
information greatly improves the efficiency of this process, since no searching for
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tetrahedra is then required.

The following information needs to be maintained about a raypath: a list of the
tetrahedra though which it passes; and for every tetrahedron, the exit face of the ray,
the radius of curvature of the ray, the coordinate transformation and origin shift, and
the polar angles of the starting and ending point.

We note that the raytracing effort scales linearly with the number of tetrahedra
encountered along the ray path, and not with the length of the ray.  The use of large
tetrahedra, wherever possible, thus improves the efficiency of raytracing.  On the
other hand, halving the node spacing leads to only a doubling of raytracing effort,
even though it increases the number of nodes by a factor of 8.

A.14 Reflecting a Ray off an Interface.  Raypaths containing reflections off of
specified interfaces can be calculated though a simple modification of the above
procedure.  The ray is traced to the reflecting interface, its tangent is modified
according to Snell's law, and the raytracing is resumed.

Snell's law requires that the components of the phase slowness parallel to the
reflecting interface be equal for both incident and reflected rays, and that the normal
component have opposite signs.  Thus one begins by defining a new coordinate
system with (x', y', z') axes parallel to ((x(3)−x(1)) cross ((x(2)−x(1)) cross (x(3)−x(1))), x(3)−
x(1), (x(2)−x(1)) cross (x(3)−x(1))), where x(2), x(1) and x(3)  are the vertices of the face. The
tangent is rotated to this coordinate system, the sign of its z'-component is reversed,
and it is rotated back.

A.15. Point to Point Raytracing.  In many important seismological applications rays
need to be traced from a common “source” to a set of “receivers” located either on the
surface of the model or on an internal interface.  (We note that the sense of source and
receivers are wholly interchangeable, because the principle of reciprocity guarantees
that the ray from, say, xA to xB is also the ray from xB to xA). 

Another concern arises from the fact that several rays may emerge from a source in
different directions, and yet converge upon the same receiver.  Identifying all these
“multipathed” rays may be important in seismological applications.  The search
procedure that we outline below has the advantage of addressing both the “several
receivers” and “multiple ray” issues simultaneously.

We begin by shooting a large set of rays from the source to the receiver interface.
The initial ray tangents are chosen to span all the solid angle around the source, and
can conveniently represented as  tij, where the subscripts (i, j) index the polar angles
(e.g. azimuth, ϕ,  and dip, θ) of each ray.  The intersection points, xij, of each ray with
the receiver interface (if any) are tabulated.  The number of rays needed in this table
depends upon the complexity of the underlying model, but our experience is that 104

to 105 rays are usually sufficient.

If they intersect the receiver interface, then a set of three neighboring rays (i.e. with
indices (i,j), (i+1,j), (i,j+1) or (i+1,j), (i+1,j+1), (i,j+1) form a triangle on that interface
(Fig. A.15.1). We now select a single receiver and search for all triangles that enclose
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it, using a test analogous to the tetrahedron test, above. Associated with each
enclosing triangle is a small sliver of solid angle that contains the exact ray tangent
that takes a ray from the source to that specific receiver.  We use a refinement
process, described below, to iteratively improve the estimate of the tangent.  Having
found one ray connecting the source to the selected receiver, we proceed to the next,
and after finishing all that receiver's rays, we begin on the next receiver.

The test of whether a point lies with a triangular patch of an interface should be
performed in a coordinate system aligned with that interface (e.g. with the z' axis
normal to it).  Then only the (x', y') coordinates are relevant.  Each side of the triangle
is defines by two points, (x(1)',y(1)') and (x(2)',y(2)'). The equation of this line is then f(x',
y')=ax'+by'+c=0, where a=(y(1)'−y(2)')/D and b=(x(2)'−x(1)')/D and D=x(1)'y(2)'-x(2)'y(1)'.  As
with the tetrahedron, a point (x', y') lies within a triangle if it lies on the same side of
every side as the excluded vertex.  This condition is equivalent to f(x', y') having the
same sign as f(x(i)',y(i)'), where (x(i)',y(i)') is the vertex excluded from side i, for all three
sides.

In our experience, the coordinate transformation mentioned above can be omitted,
since in practice most interfaces are sufficiently non-vertical for the untransformed
horizontal coordinates (x, y) to be used.

We use a two step refinement procedure.  The first step is to trisect the solid angle
enclosing the true tangent, by tracing a single new ray that has the mean direction of
the original three.  This ray subdivides the original triangle in three triangular pieces,
only one of which contains the source.  The trisection process is iterated until some
preset limiting precision is reached.

The second step is to use Newton's method to refine the estimate of the tangent.  The
idea is to view the ray intersection as a function of the take-off angles (θ, ϕ) and to
linearize it about the current estimate of those angles, (θ0, ϕ0), using Taylor's theorem.
After denoting the horizontal components of x as xH=[x,y]T and the take-off angles
with the 2-vector a=[θ, ϕ]T, we have:

xH(t) ≈ xH(t0) + ∂xH/∂a dot (a− a0 ) (Eqn A.15.1)

Here ∂xH/∂a is the matrix of partial derivatives of the ray intersection point with take-
off angle. By setting xH(t)=xH

r, where xr is the receiver location, we have:

a ≈ a0 + [∂xH/∂a]−1 (xH
r−xH(a0)) (Eqn A.15.2)

Here the superscript −1 signifies the matrix inverse.  This equation is iterated until
xH(t0) is acceptable close to xH

r.

Our experience is that the partial derivatives can easily be computed with finite
differences (at the expense of tracing two extra rays):

∂xH/∂a1 = ∂x/∂θ = [xH(θ+∆θ,ϕ) – xH(θ,ϕ)]/∆θ
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∂xH/∂a2 = ∂x/∂ϕ = [xH(θ,ϕ+∆θ) – xH(θ,ϕ)]/∆ϕ (Eqn. A.15.3)

Here ∆θ and  ∆ϕ are small increments in take-off angle.  We note that methods are
also available to calculate these derivatives variationally, using ray integrals, but do
not discuss them further here.

The point-to-point raytracing can fail for a variety of reasons.  Two rays can fall
within the same triangle if the initial search is too coarse, in which case one may be
missed.  If the true ray a caustic or focus, then the matrix of partial derivatives can
become singular and Newton's method will fail. And finally, the receiver may lie
within a shadow, in which case no true ray exists.

We note that the derivatives, ∂x/∂θ and ∂x/∂ϕ  in A.15.3 can be used to find the
geometrical spreading function, R, that controls the amplitude of the particle motion
of the seismic wave.  The idea is that any energy that leaves the source in a small
wedge of solid angle, ∆Ω=sin(θ)∆θ∆ϕ, remains within the “ray tube” defined by the
neighboring three rays, and is spread out over large and larger areas as those rays
diverge.  The geometrical spreading function, R, relates the perpendicular area, A⊥, of
the ray tube to the increment of solid angle, dΩ, that it subtends by A⊥=R2dΩ. Seismic
amplitude is proportional to the square root of energy,  so it is proportional to 1/R.
The three rays intersect with the interface to form a triangle with sides dxθ=(∂x/∂θ)dθ
and dxϕ=(∂x/∂θ)dϕ.  The area of this triangle is A = ½ |dxθ cross dxϕ| = ½ |∂x/∂θ cross
∂x/∂ϕ|  dθdϕ. However this triangle is in the plane of the interface, which is not in
general perpendicular to the ray. Simple geometry indicates that A⊥=Acos(ψ) where ψ
is the angle between the ray direction, t, and the interface normal, n (note cos(ψ)=n
dot t).  We thus have:

 R2 = A⊥/dΩ

= ½ |∂x/∂θ cross ∂x/∂ϕ| (n dot t) / sin(θ) (Eqn A.15.4)

A.16 Wavefront to Point Raytracing.  In some applications (e.g. teleseismic
tomography), the source is a prescribed wavefront, as contrasted than a point. The
goal is the to trace a ray, starting at a point on the wavefront and in a direction
initially normal to it to a specified receiver.  The point-to-point raytracing descried
above can easily be modified to accomplish this goal.

The initial search begins by tracing a large set of rays from a grid of points, xs(i)(j), on
the wavefront to corresponding points,  xr(i)(j), on the receiver interface.  An search that
is exactly analogous to the point-to-point case is now used to identify triangles of
xr(i)(j) that contain a given receiver point, xr, and to home-in on the exact point on the
wavefront that has a ray that connects to the receiver.

The wavefront itself can be specified thought is arrival time, T(x,y,z0), at some
reference depth, z0, at the bottom of the model.  The horizontal slowness of a ray
leaving the wavefront at a point (x,y,z0) is then (sx, sy) = (dT/dx, dT/dy) and the
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corresponding ray tangent is t=[sxv(x,y,v0), syv(x,y,v0), −√(1−tx
2−ty

2)]T.  In many cases
the wavefront can be adequately approximated as planar, in which case the arrival
time function is T(x,y,z0)=sxx+syy+t0.  Here t0 represents the arrival time of the wave
at the reference position (0,0,z0).

The arrival time of the wave at the receiver is the sum of the traveltime along the ray
and the arrival time of the wavefront at the point that the ray leaves it.

A.17 Traveltime Tomography.  The key idea in traveltime tomography is that
observations of the traveltime of rays through the model contain information about
the velocity structure of the model. Traveltime data therefore can be used to solve for
estimates of the velocity structure.

While seismic velocity is a continuously varying field, it is being determined by a
finite set of discrete parameters, the nodal velocities and positions that describe the
model.  It is therefore appropriate to view the calculated traveltime, T, along a given
ray, i, as a function of these model parameters.  Using the M-vector, m, as a shorthand
for the model parameters, we have:

Ti(m) = Ti
obs (Eqn. A.17.1)

where Ti
obs are the traveltimes observed in an actual experiment.  We now linearize

this equation around some initial estimate of the model, m0, and rearrange:

∂Ti/∂m dot (m−m0) ≈ Ti
obs – Ti(m0)

∂Ti/∂m dot ∆m ≈ ∆Ti (Eqn. A.17.2)

Here  ∆m =(m−m0) represents the perturbation to the reference model, m0, that leads
to a corresponding perturbation in traveltimes, ∆Ti =Ti

obs–Ti(m0) sufficient to match
the data. If there are N traveltime data and M model parameters, then Eqn. A.17.2
represents a N×M matrix equation for the unknown model perturbations, ∆m.

Eqn. A.17.2 is usually ill-conditioned, so that it cannot be solved by simple
premultiplication by the matrix inverse.  A common problem is that some parts of the
model are completely unsampled by rays, so that no traveltime data constrain the
value of certain model parameters.  This phenomenon results in a whole columns of
the matrix, ∂Ti/∂m, being zero.  One simple approach to the solution of such equations
is to use the damped-least squares method (Menke, 1989, p. 54). Defining a N×M
matrix, G, (sometimes called the “data kernel”) as Gij=∂Ti/∂mj, we have:

[GTG + ε2I] dot  ∆m  =  GT dot ∆T (Eqn. A.17.3)

∆m = [GTG + ε2I]−1 dot GT dot ∆T (Eqn. A.17.4)

Here I is the identity matrix and ε2 is a “damping parameter”. When the damping
parameter is zero, the solution (if it exists) exactly minimizes the least-square
traveltime error,  E = ∆T dot  ∆T.  When  ε2  is very large, model perturbations are all
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driven toward zero (in the sense that  ∆m dot ∆m→0).  At intermediate values of the
damping parameter the solution has the desired property of being very nearly the
least-squares solution but having the unconstrained model parameter perturbations
driven close to zero.  Some experimentation is needed to find an optimum value of the
damping parameter.  Our approach is to express it in terms of a fraction of the largest
element of GTG , in which case optimal values are typically in the range of 0.1 to
0.001.

In practical problems, the number of traveltime observations, N, the number of
nodes, L, and the number of model parameters, M, are large (e.g. all of order 104).
The data kernel, G, is thus a very large matrix (e.g. of order N×M=108  elements).
However, in cases where each model parameter effects only a few neighboring nodes,
most of these elements are zero, since a row of G corresponds to a single traveltime
observation and ray, and a single ray will interact with only a small subsets of nodes
in the model.  For instance, suppose that a single model parameter influences J
neighboring nodes, and the total number of model parameters is about the same as the
number of nodes. Then a single ray crossing the model, which interacts with about
L1/3 nodes, will interact with about JM1/3 model parameters. G will have on order
JN1/3M non-zero elements.  Taking J=10, as might be typical in an actual application,
the above example gives 2×106 non-zero elements, or just 2% of the total number of
elements. The data kernel is thus a “sparse” matrix.  The M×M matrix, GTG, that
appears in Eqn. A.17.3 is also sparse, although in our experience it is not usually as
sparse as G (e.g. 90% sparse).

Since both G and GTG are typically rather large, efficient storage techniques that
explicitly recognize the sparseness and store only non-zero elements are usually a
necessity.  The most common strategy is to organize the non-zero elements as linked
lists of elements (rather than as an array of elements) (Press, 1992). Special effort
must also be taken to optimize the storage strategy for computing the dot product of
the sparse matrix and its transform with an arbitrary vector, as these operations are
required in many parts of the inversion process.

Care must be taken not to destroy the sparseness of Eqn. A.17.3 during its solution.
For this reason, explicit computation of the matrix inverse, as in Eqn. A.17.4 , is
usually not  advisable, since the inverse of a sparse matrix is in general not sparse.
Methods that involve row and column transformations, such as Gaussian elimination
and Householder rotation, also destroy the sparseness.  On the other hand, many
iterative methods of solving a linear system (like Eqn. A.17.3) are available that only
require the sparse matrix, and possibly its transform, to be dotted with vectors.  Our
own experience is that the biconjugate gradient iterative method (Press, 1992) is
particularly suited to solving Eqn. A.17.3.

Since Eqn. A.17.3 is derived by linearization, the estimated model m=m0+∆m is only
an approximation to the best-fitting model.  Iteration of the equation may therefore be
necessary.  Each iteration requires a major computational effort, since a new set of
rays need to be traced though the updates model.
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A.18 Model Parameters. While the model parameters need to control that nodal
velocities and positions, they need not have a one-to-one correspondence to them.  In
our experience, considerable flexibility is gained by defining them to be linear
combinations of either nodal velocities or nodal positions. We thus define velocity
model parameters:

∆v(i) = Σj=1
Mwij ∆mj ;    i=1, L (Eqn. A.18.1)

and position model parameters:

∆x(i) =  Σj=1
M Wij ∆mjj ;    i=1, L (Eqn. A.18.2)

Here L is the number of nodes and wij and Wij are weights. Note that each Wij  is a 3-
vector that represents both a weight and the direction in which the node is displaced.

In the case of velocity model parameters, increasing the i-th model parameter changes
the velocities of a group of nodes  - those for which the weights, wij, are nonzero - by
an amount specified by the weight.   In the case of position model parameters,
increasing the i-th model parameter changes the position of a group of nodes  - those
for which the weights, Wij, are nonzero - by an amount and direction specified by the
weight.

Defining both position and velocity model parameters that effect the same node
should be avoided, because they are to a large degree redundant.  Similar
perturbations in the velocity structure can be achieved by either changing the velocity
of a node of by moving it to a new position.  This redundancy only adds to the ill-
conditioned nature of the tomography.  Our practice is to use velocity model
parameters exclusively, except where we have data from reflected phases that
specifically sample the position of an interface within the model.

Model parameters that are the weighed sums of nodal velocities (or positions) are
useful because they allow one to decouple the spatial scale of the model (which may
need to be fine in order to represent small-scale features such as surface topography)
from the spatial scale of the inversion (which may need to be coarse if only few data
are available).  The weighting functions therefore control the spatial correlation length
of the inversion.

The shortest correlation is achieved when M=L and wij=δij, where δij is the Kronecker
delta function.  Here every model parameter controls the velocity of exactly one node.
Choosing M=L and wij to decrease with the distance between nodes, wij=exp(−r2/c2)
with r=|x(i)−x(j)| and c a constant imposes smoothness with a length scale of c.  For
models that are organized into a series of K sub-horizontal interfaces, the choice M=K
and wij=1 if node i is on interface j and zero otherwise permits one to find the best-
fitting “stratified” solution.  Our practice is to always begin the inversion process with
stratified model parameters, so as to first match general (and strong) increase of
velocity with depth that is present in most places.

We normally choose the model parameters to have equal overall weight, in the sense
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that Σi=1
Lwij=1 for all model parameters.  We note however that different weights can

be used to selectively damp different parts of the model.  Since the damping tends to
drive ∆m dot ∆m to zero, giving a specific model parameter a larger weight tends to
allow the corresponding velocity perturbations to be larger than average. This strategy
can be used to find solutions that force velocity perturbations to be in particular
places, which can be useful for hypothesis testing. For instance, assigning large
weights to “shallow” model parameters ensures that if shallow and deep perturbations
trade off with one another, the inversion will recover a model that favors the shallow
ones.  Thus any deep perturbations that are present are likely to be “real”, in the sense
of being required by the data.

A.19 Partial Derivatives of Traveltime with Nodal Velocity.  We present two
method of calculating the derivative of traveltime with velocity-type model
parameters.

Method 1 uses the chain rule to construct the desired quantity, ∂Ti/∂mj, from several
simpler partial derivatives. We start from the statement that the traveltime is an
integral of the velocity field along the ray,  T=∫ray ds/v.  Let us now write the velocity
in terms of the velocity of a reference velocity and a perturbation, v=v0+∆v. The
traveltime integral becomes:

T=∫ray ds/v = ∫ray ds/v0 − ∫ray ∆v/v0
2 ds (Eqn. A.19.1)

∆Τ = −∫ray∆v/v0
2 ds (Eqn. A.19.2)

The integration path is most properly the perturbed raypath (i.e. along whatever ray
corresponds to velocity, v). We will use Fermat's principle, however, to justify
performing the integral along the unperturbed ray path (i.e. the ray path corresponding
to velocity, v0). Fermat's principle roughly states that the traveltime integral is
insensitive to small errors in the raypath.

Within a tetrahedron, both the velocity field and its perturbation are linear functions
of position.  Suppose that we work in a rotated coordinate system defined in A.10.
Then along the circular unperturbed raypath these linear functions are:

 v0= R |g| z' =  R |g| cos(θ) (Eqn A.19.3)

∆v = ∆a dot [x', y', z', 1]T

=∆a1x' + 0 + ∆a3z' + ∆a4

= ∆a1Rsin(θ) + ∆a3Rcos(θ) + ∆a4 (Eqn. A.19.4)

Here ∆a is a 4-vector of coefficients. Substituting Eqn. A.19.3 into A.19.3 yields:

∆Τ = − ∫θ0
θ

 ( ∆a1Rsin(θ) + ∆a3Rcos(θ) + ∆a4 ) / (R2 |g|2 cos2(θ)) Rdθ
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= ∆a1 (−1/|g|2) ∫θ0
θ

  sin(θ)/cos2(θ) dθ + ∆a2 0
+ ∆a3 (−1/|g|2)  ∫θ0

θ
  1 / cos(θ) dθ

+  ∆a4   (−1/(R|g|2)) ∫θ0
θ1 / cos2(θ) dθ (Eqn. A.19.5)

The three integrals can all be performed analytically, and are given by Eqns. A.12.15,
A.10.2 and A.12.6, respectively.  The resulting formula is thus of the form ∆T=f dot
∆a, where f is a known 4-vector involving these integrals.  Since in general,
∆T=∂T/∂a dot ∆a,  the 4-vector, f, can be identified as the partial derivative, ∂T/∂a:

∂T/∂a = f (Eqn. A.19.6)

The coefficients, a, of the linear velocity function are related to the four nodal
velocities, v, of the tetrahedron though the linear equation Eqn. A.4.2, v  = M dot a,
where M is a 4×4 matrix containing nodal positions (but note that the positions are in
the transformed coordinate system). The solution of this equation is a = M-1 dot v.
Differentiation yields:

∂a/∂v= M-1 (Eqn. A.19.7)

The nodal velocities perturbations are related to perturbations in the velocity model
parameters though Eqn. A.18.1, ∆v(i) = Σj=1

Mwij ∆mj.  Hence we conclude that:

∂v/∂m = w* (Eqn. A.19.8)

where w* is a 4×M matrix whose elements are the weights that connect the model
parameters with the four nodal velocities corresponding to this tetrahedron. The chain
rule now allows us to combine Eqns. A.19.6, A.19.7 and A.19.8:

∂T/∂m = ∂T/∂a dot ∂a/∂v dot ∂v/∂m

= f dot M-1 dot w (Eqn. A.19.9)

This resulting partial derivative matrix represents the contribution from one
tetrahedron, and must therefore be summed over all tetrahedra though which the ray
passes.

Method 2 uses finite differences to calculate ∂T/∂m from the formula:

∂T/∂mi = [T(m0
1, ... , m0

i+∆m, ... , m0
M) – T(m0) ] / ∆mi (Eqn. A.19.9)

Here ∆mi is a small increment that is added to the i-th model parameter.  The
calculation of the perturbed traveltime is performed simply by using Eqn. A.18.1 to
perturb the nodal velocities, calculating the linear formula using A.4.2, and
integrating along the raypath using Eqn. A.12.17.
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This method is less efficient than the first, but is algebraically simpler.

A.20 Teleseismic Tomography. One limitation of teleseismic tomography (i.e. where
the sources are wavefronts entering from the bottom of the model) is that the arrival
time of that wavefront at some reference depth deep in the model is rarely known to
any useful accuracy.  Uncertainties in the origin time of the earthquake and in global
earth structure are usually much larger than the effect of heterogeneities in the model.
On the other hand, the error is common to all stations that observe the arrival time of
the same teleseism.  One can therefore modify modify Equation A.17.2, G dot ∆m =
∆Τ,  to remove the effect of the uncertainty.  We begin by considering just the rows of
G associated with a particular teleseism, and adding a term, e, that represents the error
in the origin time:

Σj=1
M Gij ∆mj = ∆Ti  + e (A.20.1)

We now sum over those i's − say there are N' of them − that correspond to
observations of a single teleseism:

Σi Σj=1
M Gij ∆mj = Σi ∆Ti + N' e (A.20.2)

We then divide Eqn. A.20.2 by N' and subtract it from Eqn. A.20.1, to yield:

Σj=1
M Gij ∆mj − (1/N') Σi Σj=1

M Gij ∆mj = ∆Ti −  (1/N') Σi ∆Ti  (A.20.1)

The right hand side of this equation has the interpretation of “relative” traveltime
error. The procedure must be applied to each group of rows of G that correspond to
observations of an individual teleseism.  The procedure has two undesirable effects.
First, and most importantly, information about the laterally-averaged velocity
structure is lost.  Only lateral heterogeneities in velocity structure can be detected.
Second, some elements of G that might originally have been zero are made non-zero,
which decreases the efficiency of some matrix storage algorithms.

A.21 Partial Derivatives of Traveltime with Nodal Position.  We present two
method of calculating the derivative of traveltime with position-type model
parameters.

Method 1 is analogous to the first method described for velocity-type derivatives
(Eqn. A.19.1).

∂T/∂m = ∂T/∂a dot ∂a/∂X' dot ∂X'/∂m (A.21.1)

A change in model parameters, ∆m, causes the position, x' (i),  (in the primed
coordinate system) of each of the four nodes of a particular tetrahedron to displace a
distance, ∆x' (ι), as specified by Eqn. A.18.2. Let us now group the four node positions
into a single 12-vector, X'=[x'(1), y'(1), z'(1), ... z'(4)]T and note that the equation for
relating node positions, X', to the coefficients, a, is Eqn. A.4.2, a = [M (X')]−1 dot v. Its
derivative can be calculated using the rule (M+∆M )−1=M −1−M −1 dot ∆M dot M −1
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(Menke and Abbott, 1990, p. 435):

∂a/∂X'i = −M−1 dot ∂M/∂Xi dot M−1 (A.21.2)

As each node coordinate, X'i, appears in only one element of M, and since it appears
as itself (as contrasted to a complicated function), ∂M/∂Xi  is a 4×4 matrix with one
element equal to unity and all the rest zero.

In the unprimed coordinate system, the derivative, ∂M/∂Xi , is analogous to A.19.8,
∂X/∂m=W*, where W* is a 12×M matrix of the components of the weights, Wij, from
Eqn. A.18.2 that correspond to the four nodes of the tetrahedron under consideration.
As the primed and unprimed coordinates are related through the transformation, S, the
derivative,  ∂X'/∂X, just contains the elements of S.  Finally, we can use the chain rule
to write:

∂T/∂m = ∂T/∂a dot ∂a/∂X' dot ∂X'/∂X dot ∂X/∂m (A.21.3)

As before, the contribution of all tetrahedra along a ray must be summed.  An
important issue concerns the integration path in the ray integral in the ∂T/∂a part of
the derivative.  Equation A.19.5 indicates that it should be performed along the
unperturbed raypath.  However, a perturbation in the node positions changes the shape
of the tetrahedron, and thus shortens or lengthens the raypath in each tetrahedron.
The derivative for any given tetrahedron thus contains an error associated with this
change in ray length.  On the other hand, the errors for adjoining tetrahedra are of
opposite sign.  Any perturbation of the position of a face increase the length of the ray
in one tetrahedron but decreases it in the adjoining tetrahedron by an equal amount.
Since the velocity is continuous across the face, the traveltime perturbations exactly
cancel.  Integration along the unperturbed raypath is thus acceptable.

Exceptions to this error cancellation occur when the perturbation moves the receiver
interface or a reflector interface, since there is then no compensating adjacent
tetrahedron.  In practice, receiver interface perturbations are rarely a concern, since in
most experiments receivers are placed at known positions.  The reflector interface
issue is more interesting, and is discussed in the next section.

Method 2 simply uses a combination of raytracing and finite differences to calculate
the derivative. The idea is to perturb a model parameter, mi, (and hence the node
positions) and trace a new ray from the source to the receiver interface, using the take-
off angles of the unperturbed ray. The traveltime is computed along this perturbed
ray.  However, the perturbed ray will not in general pass through the receiver point, xr,
but instead intersect the receiver interface at some other point, x.  The traveltime thus
need to be corrected by adding a term t dot (x−xr)/v(xr), where t is the ray tangent at x.
This term represents propagation of a planar wavefront from x to xr. The traveltime is
calculated along this ray and Eqn. A.19.9 is used to estimate ∂T/∂mi.

This method is less efficient than the first but is algebraically simpler.  In general, this
method requires that one extra ray be traced for each traveltime-model-parameter
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combination, a total of N×M in all.  In practice, however, the number of extra rays is
much less, since a given traveltime is typically associated with a ray that is influenced
by only a few model parameters.  In order to gain this efficiency, one must test
whether ∂T/∂mi is zero before proceeding with a full calculation.  Lists of which nodes
are effected by a particular model parameter, and which tetrahedra are effected by a
particular node are very useful for this purpose.

A.22 Partial Derivatives of Reflected Wave Traveltime with Nodal Position. The
method of calculating ∂T/∂m that we describe here accounts for the fact that the ray
must satisfy Snell's law on the reflector interface.  Thus as the position of the interface
is perturbed, the point of reflection moves in a compensatory way.

In the following derivation we will rely heavily upon both the chain rule (e.g. as used
in Sections A.19 and A.21) and on the fact that, for any n-vectors x and y, where we
can consider one to be a function of the other, the partial derivative ∂x/∂y is the matrix
inverse of the partial derivative ∂y/∂x.

We assume that the unperturbed ray leaves the source, xs, with tangent, ts0, reflects
from the interface and arrives at the receiver, xr, with tangent, tr0.  We divide the ray
into two parts, ray A from source to reflection point and ray B from receiver to
reflection point (Fig. A.21.1).  Note that we have reversed the sense of propagation of
ray B. It now leaves the receiver with tangent, −tr0, and propagates back towards the
reflecting interface.  Let us denote the takeoff angles associated with ts0 and −tr0 as ψA0

and ψB0, their traveltimes as TA0 and TB0, their intersections points with the reflecting
interface as xA0 and xB0, and their tangents at those points as tA0 and tB0, respectively.
Since rays A and B constitute a true reflected ray, xA0=xB0 and their tangents tA0 and tB0

satisfy Snell's law (i.e. in a coordinate system normal to the reflecting interface, their
interface-parallel components are equal).  Let these components be denoted by the 2-
vectors, tH

A0 and tH
B0, and the corresponding components of position be denoted, xH

A0

and xH
B0. Then Snell's law implies tH

A0=−tH
B0 and xH

A0=xH
B0.

We now perturb a single model parameter i by ∆mi (thus causing a change in the
position of the reflecting the interface) and retrace rays A and B.  In general neither
the conditions  xH

A=xH
B nor tH

A=−tH
B will be satisfied.  We must therefore perturb the

take-off angles, ψA and ψB, so that these conditions are once again satisfied.

We begin by calculating, by finite differences (e.g. Eqn A.15.3), the derivatives
∂xH

A/∂ψA, ∂tH
A/∂ψA, ∂TA/∂ψA, ∂xH

B/∂ψB, ∂tH
B/∂ψB,and ∂TB/∂ψB. Note that two

additional rays must be traced from both the source point and the receiver point to the
reflecting interface.  We then use the chain rule to eliminate the take-off angles from
these derivatives, i.e. to find the derivatives of tangent and traveltime with reflector
position:

∂tH
A/∂xH

A = ∂tH
A/∂ψA [∂xH

A/∂ψA]−1 (Eqn. A.22.1)

∂ΤA/∂xH
A = ∂ΤA/∂ψA [∂xH

A/∂ψA]−1 (Eqn. A.22.2)
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∂tH
B/∂xH

B = ∂tH
B/∂ψB [∂xH

B/∂ψB]−1 (Eqn. A.22.3)

∂ΤB/∂xH
B = ∂ΤB/∂ψB [∂xH

B/∂ψB]−1 (Eqn. A.22.4)

The matrix inversion can be computed analytically, as all the above matrices are 2×2.
We use these derivatives to write first order equations for variation of the tangents and
the traveltime with the position, xH, of the reflection point:

tH
A(xH) = tH

A(xH
A) + ∂tH

A/∂xH
A dot (xH−xH

A) (Eqn. A.22.5)

tH
B(xH) = tH

B(xH
B) + ∂tH

B/∂xH
B dot (xH−xH

B) (Eqn. A.22.6)

TA(xH) = TA(xH
A) + ∂ΤA/∂xH

A dot (xH−xH
A) (Eqn. A.22.7)

TB(xH) = TB(xH
B) + ∂ΤB/∂xH

B dot (xH−xH
B) (Eqn. A.22.8)

By inserting Eqns. A.22.5 and A.22.6 into Snell's law (tH
A=−tH

B) we achieve a 2×2
matrix equation for the position of the bounce point, xH:

 [∂tH
B/∂xH

B + ∂tH
A/∂xH

A] dot xH =

 − tH
A(xH

A) −  tH
B(xH

B)

+ ∂tH
B/∂xH

B dot xH
B + ∂tH

A/∂xH
A dot xH

A (Eqn. A.22.9)

The solution of this simple 2×2 equation is inserted into Eqns. A.22.7 and A.22.8 to
yields an estimate of the traveltimes along the true perturbed ray (i.e. one that satisfies
Snell's law). The finite difference derivative is then:

∂T/∂mi = [ (TA+TB) − (TA0+TB0) / ∆mi (Eqn. A.22.10)

A.23 Inversion for Both Compressional and Shear Velocity.  The methodology
that we have established above will work for either compressional or shear velocity,
taken individually  Sometimes, however, a joint inversion for both compressional
velocity, α, and shear velocity, β, is preferable, because it provides a opportunity to
assess the degree to which their variations track one another.  Empirically, one often
finds that β=rα, where the proportionality constant, r, is in the range 0.5-0.6.
Identifying regions in which r is significantly different from some background level
may be important, because such variations may be indications of strong changes in
lithology or temperature.

We begin by defining model parameters for compressional velocity, α, and shear:
compressional velocity ratio, r, that are analogous to Eqn. A.18.1:

∆α(i) = Σj=1
Mαwα

ij ∆mα
j ;    i=1, L (Eqn. A.23.1)
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∆r(i) = Σj=1
Mawr

ij ∆mr
j ;    i=1, L (Eqn. A.23.2)

Here ∆α(i) and ∆r(i) are the perturbations of the nodal compressional velocity and ratio,
respectively, and  ∆mα

j  and  ∆mr
j  are their corresponding model parameters.  The

total number of model parameters is M=Mα+Mr.   In general, the number of velocity
and ratio model parameters may be different.  In many practical instances the choice,
Mα>>Mr , may be reasonable (i.e. the ratio is assumed to vary much more slowly with
position than does compressional velocity).

Let us assume that there are NP P-wave traveltime data, TP,  and NS S-wave traveltime
data, TS, with NP+NS=N.  The data kernel, G, is an N×M matrix of partial derivatives.
Following the approach of A.19, we calculate these derivatives by summing the
contributions of each tetrahedron through which the ray P or S rays passes (the two
rays in general have different paths).  For each tetrahedron we identify for nodal
compressional velocities, α=[α(1), α(2), α(3), α(4)]T, four nodal shear velocities, β=[β(1),
β(2), β(3), β(4)]T , and four nodal ratios, r=[r1), r(2), r(3), r(4)]T. The requirement that both
α(x) and β(x) vary linearly within each tetrahedron implies that we must interpolate
β(x) , not r(x) , within the tetrahedron.  We denote that coefficients of the linear
compressional velocity and shear velocity functions as a and b, respectively (i.e.  α=a
dot [x', y', z', 1]T  and β =b dot [x', y', z', 1]T. The partial derivatives are then:

∂TP/∂mα = Σtetrahedra ∂TP/∂a dot ∂a/∂α dot ∂α/∂mα (Eqn.A.23.3)

∂TP/∂mr = 0 (Eqn.A.23.4)

∂TS/∂mα = Σtetrahedra ∂TS/∂b dot ∂b/∂β dot dβ/dα dot ∂α/∂mα

(Eqn. A.23.4)

∂TS/∂mr = Σtetrahedra ∂TS/∂b dot ∂b/∂β dot ∂β/∂r dot ∂r/∂mr

(Eqn.A.23.6)

The derivative of nodal shear velocity with nodal compressional velocity is just the
4×4 matrix,  ∂β/∂α=diag(r1), r(2), r(3), r(4)). Similarly, the derivative of nodal shear
velocity with nodal ratio is the 4×4 matrix,  ∂β/∂α=diag(α(1), α(2), α(3), α(4)).  The other
component derivatives are just the compressional and shear velocity versions of the
derivatives given in in Section A.19.

One sensible arrangement of G dot ∆m = ∆T is to organize the traveltime
perturbations, ∆T, with the P-wave traveltime perturbations, ∆TP, on top and the S-
wave traveltime perturbations, ∆TS, on the bottom.  Similarly, the the model
parameter perturbations, ∆m, can be organized with the compressional velocity model
perturbations, ∆mα, on top and the ratio model perturbations, ∆mr, on the bottom.  The
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data kernel then consists of four blocks of derivatives, with ∂TP/∂mα in the upper left,
zeroes in the upper right, ∂TS/∂mα in the lower left and ∂TS/∂mr  in the lower right.

A larger damping is usually applied to ratio model parameters than to the
compressional velocity model parameters, in order to select a solution preferentially
biased toward velocity heterogeneity (as contrasted to ratio heterogeneity).  This
damping can be achieved by making the overall magnitude of the ratio weights, wr

ij,
smaller than then velocity weights, wα

ij.

A.24 Time-dependent or “4D” Inversions.  Suppose that we perform two
experiments, one at time, t1, and the other at some later time t2.  We might want to
determine whether the underlying velocity models differ significantly.  We write:

v(x,t2) = v(x,t1) + (dv/dv) ∆t

= [1 + ∆t (dv/dv) / v(x,t1) ]  v(x,t1)

= r(x) v(x,t1) (Eqn. A.24.1)

with ∆t=t2−t1. The quantity (r−1) represents the fractional change in velocity between
times t1 and t2.  Equation A.24.1 has the same form as the the compressional-shear
velocity relationship, β=rα, of Section A.23, so the corresponding problem can be
solved in the same way.

A.25 Inversion for Attenuation.  We begin by defining attenuation model
parameters, m, that control the nodal reciprocal quality factors, Q−1(i), at the nodes of
the model:

Q−1(i) = Σj=1
M wij mj (Eqn. A.25.1)

Note that the model is defined in terms of the reciprocal quality factors themselves,
rather than in terms of perturbations about a reference model.  As we will show
below, the attenuation inversion is completely linear, and will not require linearization
about a starting model.  Within each tetrahedron, the reciprocal quality factor is taken
to vary linearly, so that Q-1 is give by the usual interpolation formula, Q−1= q dot [x',
y', z', 1]T , where q  is a 4-vector of coefficients.  These coefficients can be found by
solving the usual matrix equation, a = M dot q, where a=[Q−1(1),  Q−1(2), Q−1(3), Q−1(4)]T

is a 4-vector of nodal reciprocal quality factor values and M  is a 4×4 matrix of node
coordinates in the primed coordinate system of the same form as in Eqn. A.4.1.
Inserting the linear formula into the defining relationship for attenuation,
T*=∫rayQ-1ds/v, and integrating using the formulas of section A.11 yields T*=q dot h,
where h is a 4-vector of trigonometric functions given by Eqn. A.11.2. And A.11.3.
The partial derivative of attenuation with model parameters is then:

∂T*/∂m = Σtetrahedra ∂T*/∂q dot ∂q/∂a dot ∂a/∂m

31



= Σtetrahedra h dot M−1 dot w (Eqn. A.25.2)

Here w is a 4×M matrix of  those weights, wij, that relate the model parameters to the
reciprocal quality factors at the 4 nodes of the tetrahedron under consideration.  The
equation relating attenuation to model parameters is G dot m = T*, where Gij = 
∂T*i/∂mj. It can be solved via damped least-quares, as given by Eqn. A.17.4.

A.26 Earthquake location (Geiger's Method).  Suppose that we have observations
of the arrival time, τi, of seismic waves from a source at xs to a set of N receivers at
xr(i).  The problem is to use the arrival times to deduce to source location, xs, and
source origin time, t0. We begin by writing:

τi(xs) = Ti(xs,xr(i)) + t0 (Eqn. A.26.1)

where Ti(xs,xr(i)) is the traveltime, and then linearize this equation about an initial
estimate of the source location, xs0:

τi(xs) – T(xs0,xr(i)) ≈ [∂Ti/∂xs] dot ∆x + t0 (Eqn. A.26.2)

Here ∆x=(xs−xs0) is a 3-vector that represents a small correction to the xs0 that
improves the fit to the observed traveltime data. To first order, only the ray-parallel
component of a perturbation in source location changes the traveltime, so that ∂Ti/∂xs

= t(xs0)/v(xs0), where t is the direction of the ray as it leaves the initial estimate of the
source, and v is the velocity at that point.

Eqn. A.26.2 constitutes a N×4 matrix equation for the 4 unknowns,  ∆x and t0.  It can
be solved by damped least-squares, as in Eqn. A.17.4.  However, one must be careful
to control the relative weighting of ∆x and t0, which (after all) have different units or
measurement.  The equation involves a first-order approximation, so several iterative
applications of it are generally necessary (with new rays being traced at each step).

A problem of ill-conditioning sometimes arises when only P-wave traveltimes are
available (as contrasted to both P and S wave data), and when the source-receiver
geometry is such that all observed rays leave the source within a narrow range of
directions (i.e. with a narrow range about some mean direction, tm).  Origin time then
strongly trades off with position, in the sense that a source location perturbation of
tm∆s, where ∆s is a small increment of distance, can very nearly compensate an origin
time perturbation of −∆s/v(xs).  Damped least-squares can be used to suppress the
effects of the ill-conditioning, or more advanced techniques such as singular-value
decomposition can be used, instead.

A.27 Earthquake Location Using Differential Traveltimes. The time difference
between phase arrivals from several earthquakes observed on a common station can
often be determined more accurately than the individual arrival times, especially if
waveform cross-correlation techniques are used to calculate time differences.
Similarly, the time difference between phase arrivals to a common station can often
be predicted more accurately than the traveltimes of individual phases, especially if
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the earthquake hypocenters are spatially close to one another.  The errors in predicted
traveltimes due to a poorly known velocity model are usually highly correlated
between the phases, and tend to cancel out when time differences are computed.
Many authors (e.g. Spence and Alexander 1968,  Slunga et al.1995, Waldhauser and
Ellsworth 2000) have pointed out that these two effects imply that relative location of
a group of earthquakes can often be determined more accurately than the absolute
location of individual members of the group.

Suppose that we have a total of J sources, each with location, xs
j, and origin time, t0j,

j=1, ... J. There are a total of 4J unknown source parameters (the three components of
position and origin time). Suppose that there are K receivers, xr

k, k=1, ... K. And
suppose that there are M arrival times, τm, m=1, ... M each from from a source at xs

j(m)

to a receiver at xr
k(m)., m=1, ... M. Finally, we suppose that the actual data, dn, are not

the arrival times themselves, but rather N linear combinations of these arrival times:

dn = Σm=1
M Wnm τm , n=1, ... N (Eqn. A.27.1)

The each row of the matrix, W, specifies the coefficients for one datum, dn.  Several
special cases are worth noting:  A row that is all zero except for a single element with
a value of unity would represent an individual traveltime measurement.  A row that is
all zero except for two elements, one +1 and the other −1, would represent a
differential traveltime measurement. Finally, we note that weight of an individual
measurement, dn, in the earthquake location process can be specified by multiplying
the corresponding row of W by an appropriate constant.

The fundamental earthquake location equation ((Eqn. A.26.2) can now be extended to
this case by multiplying by the weight matrix and summing:

di – Σm=1
M Wnm T(xs0

j(m) , xr
k(m)) ≈ Σm=1

M Wnm Σp=1
3 [∂Tm/∂xs

j(m)p]  ∆xj(m)p + Σm=1
M  Wnm t0j(m)

(Eqn. A.27.2)

Here xs0
j  represents the initial guess of the location of the j-th source, and ∆xj is an

improvent to it (∆xj p is its p-th component). These are a set of N equations for the 4J
unknowns (the three components of the improvement ∆x and origin times, t0, for each
of the J events).The locations of all the J events are coupled. They must all be solved
for simultaneously.

Normally, the number of earthquakes greatly exceeds the number of stations.
Raytracing from the stations to the earthquakes, rather than vice versa, is thus most
efficient Unfortunately, the point−to−point raytracing procedure discussed above in
Section A.15 is not well−suited to this problem, because it is rather artificial to think
about the earthquake hypocenters lying on a single interface, and because that
interface would have to be redefined from iteration to iteration (as the hypocentral
locations are updated).  We solve this problem by generalizing the two dimensional
traveltime table described in Section A.15 to a fully three-dimensional one.  Prior to
the start of the earthquake location process, we shoot a large set of rays from each
station (say with takeoff angles θ and ϕ), and build a table of the positions, x(φ,ϕ,T)
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along each ray, sampled at equally spaced traveltimes, T.  We then view the ray tube
formed by three neighboring rays as being composed of a set of tetrahedra whose
vertices are at x(φ,ϕ,T). An estimate of the takefoff angles and traveltime of a ray
connecting a given station to a hypocenter at x can then be estimated by selecting the
ray tube tetrahedron (or tetrahedra, if there are multiple arrivals) that contains x and
linearly interpolating using the values at the vertices.  If greater accuracy is required,
then Newton's method (Eqn. A.15.1)  can then be used to iteratively refine this
estimate.

We note two issues related to this traveltime calculation strategy. First, a traveltime
tables must be maintained for each station, and the size of this table is necessarily
rather large.  Second, finding which ray tube tetrahedron (or tetrahedra, if there are
multiple arrivals) contains a given point, x, is a non-trivial process, especially if one
wants to avoid the time-consuming process of scanning the entire table. The problem
is that the topology of the traveltime surfaces can be very complicated, so that search
algorithms such as described in Section A.6 are not applicable. Our solution is based
on maintaining a list of all model tetrahedra touched by a given ray tube. One first
finds the model tetrahedron containing x, and then exhaustively searches within only
those ray tubes that touch that model tetrahedron.
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Fig. 1. Record section section of vertical-component (bottom) and horizontal-
component (top) seismograms of regional earthquake observed on a linear array of
seismometers.  Note that clear crustal-turning wa ves (P and S), Moho-reflected
waves (PmP and SmS) and free-surface reflections (PP and PPP) are present.  This
example is from northern Iceland (Menke et al. 1998), where the crust is mafic and
25-30 km thick.
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Fig. 2. Top: Hypothetical source-receiver geometry for α/β Case Study. Map view of
receivers (circles), P-wave sources (triangles) and S-wave sources (stars). Bottom:
Vertical cross-section through center of three-dimensional model, showing typical
raypaths.  Note deepest ray turns at a depth of about 6 km. 
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Fig. 3. Tomographic images for α/β Case Study. Row A: true model. Row B: starting
model. Row C. Results of separate P velocity, α, and S velocity, β, inversions. Row
D: Results of joint inversion for α and α/β in which the inversion has been selectively
damped to favor variability in α over variability in β. Models C and D fit the
traveltime data to within its noise.
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Fig, 4.
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Fig. 4. Top: Hypothetical source-receiver geometry for Moho Topography Case
Study. Map view of receivers (circles) and sources (triangles). Bottom: Vertical cross-
section through center of three-dimensional model, showing typical raypaths.
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Fig. 5. Tomographic images for Moho Topography Case Study. A: True model. B:
Starting model. C. Results of an inversion that has been selectively damped to favor
variability in Moho topography  over variability in crustal velocity. D: Results of
inversion that has been selectively damped to favor variability in crustal velocity over
variability in Moho topography. Models C and D fit the traveltime data to within its
noise.

42

-15

-12

-9

-6

-3

0

-25 -20 -15 -10 -5 0 5 10 15 20 25
-15

-12

-9

-6

-3

0

-25 -20 -15 -10 -5 0 5 10 15 20 25

-15

-12

-9

-6

-3

0

-25 -20 -15 -10 -5 0 5 10 15 20 25
-15

-12

-9

-6

-3

0

-25 -20 -15 -10 -5 0 5 10 15 20 25

X, km X, km

Z
, k

m
Z

, k
m

A B

C D

est. Moho

true Moho starting Moho

true Moho
est. Moho

1 2 3 4 5 6 7 8 9

Vp, km/s



Fig. 6. Six hypothetcial upper-mantle models. These six models have the velocity v(x,
y,z)=v0(z)+∆v(x,y,z). Each has a different v0, but all have the same ∆v, implying that
they are indistinguishable using teleseismic tomography.
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Fig. 7.
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Fig. 7. Top: Hypothetical source-receiver geometry for Plume Shape Case Study.
Map view of receivers (circles) and teleseismic sources (arrows). Bottom: Vertical
cross-section through center of three-dimensional model, showing typical raypaths.
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Fig. 8. Tomographic images for Plume Shape Case Study. A: True model. B: Starting
model. C: Results of an inversion with depth-constant damping. D:  Results of
“squeezed-deep” inversion that has been selectively damped to favor deep variability
in velocity. E: Results of a “squeezed-shallow” inversion that has been selectively
damped to favor shallow variability in velocity. F: Modal inversion.  Models C
through F all fit the traveltime data to within its noise.
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Fig 9. Depth profiles of the velocity anomaly from the center of the three nodal
inversions for plume structure. A).  Case of depth-constant damping. B) “Squeezed-
deep” inversion. C) “Squeezed-shallow” inversion.
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Figure 10. Earthquake Location Case Study.  A) Top view of model showing stations
(squares) and earthquakes (dots). B) True model (shown with 0.5 km/s contours) has
significant lateral heterogeneity in upper and mid crust. C) True locations of
earthquakes.  D) Model used in location (shown with 0.5 km/s contours) is similar to
the true model, but laterally homogeneous. E) Mislocation vectors when data are P
and S wave traveltimes. F) Mislocatioon vectors when data are differential P times.
See text for further discussion.
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Figure 11. Enlargement of central area of earthquake location case study, showing
mislocation vectors for A) P and S traveltime data, XZ plane. B) P and S traveltime
data, YZ plane. C) Differential P traveltime data, ZX plane. D) Differential P
traveltime data, XY plane.
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Fig. A.2.1.  Four neigboring nodes (circles) of a Cartesian mesh form a parallepiped
that can be subdivided into six tetrahedra.
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Fig. A.2.2. A “warped” Cartesian mesh.  Two sub-horizontal interfaces have been
shaded.
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Fig. A7.1. The raypath in the tetrahedron is an arc of a circle. The center of this circle
is outside the tetrahedron at the point where the velocity, v, is zero.
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Fig. A.9.1.  Finding the intersection of a circle and a line.  A) The intersection points
(black circles) are positioned symmetrically about the perpendicular bisector (dashed).
B) The intersection points can be easily calculated in a coordinate system chosen so
the z'' axis is parallel to the perpendicular bisector.
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Fig. A.15.1 Procedure for point-to-point interface.  A) A suit of rays are shot from the
source to an interface containing the receiver.  The three rays (bold curves)forming a
triangle enclosing the receiver are selected. B) The triangle is recursively trisected
into smaller triangles (shaded) by tracing a sequence of rays (labeled 2, 3, 4), each one
of which divides a triangle into three smaller pieces.
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Fig. A.21.1 Diagram for computing the partial derivative of reflected wave traveltime
with reflected interface position. A) Unperturbed case. B) Perturbed case. See text for
further discussion.
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