Page 7, MatLab eda01_06
Type: Mismatch between script and equation
Replace [1, 2, 3]'; with [1, 3, 5]';
On line 2 of script, so that script matches previous equation

$$
\begin{aligned}
& r=[2,4,6] ; \\
& c=[1,2,3]^{\prime} ; \\
& M=[11,3,5]^{\prime} ; \\
& \left.M=[1,4,7]^{\prime},[2,5,8]^{\prime},[3,6,9]^{\prime}\right] ;
\end{aligned}
$$

## Page 60, Problem 3.4

Type: Fourth line of problem, correction to text
Change:
"both in the sense that if test results are positive the probability is $99 \%$ that the cause of death was pancreatic cancer, and if they are negative the probability is $99 \%$ that the cause of death was something else".

To:
"both in the sense that if the cause of death was pancreatic cancer, the probability is $99 \%$ that the test results are positive, and if the cause of death was something else, the probability is $99 \%$ that the test results are negative".

Page 185, Equation 9.27
Type: Typo in equation
Insert convolution operator * between $\mathbf{v}^{\text {inv }}$ and $\mathbf{u}$

$$
\begin{equation*}
\mathbf{f}=\mathbf{v}^{\mathrm{inv}} * \mathbf{u} \rightarrow f(z)=\frac{u(z)}{v(z)}=c \frac{\prod_{j=1}^{N_{u}-1}\left(z-z_{j}^{u}\right)}{\prod_{k=1}^{N_{v}-1}\left(z-z_{k}^{v}\right)} \tag{9.27}
\end{equation*}
$$

Page 219, Equation 11.6
Type: typos in equation
Replace $d$ with $e$ in four places
Replace $1 / 2$ with $-1 / 2$ in two places
$J(E, \theta)=\left|\begin{array}{c}\frac{e}{\partial} \tilde{\mathscr{d}}_{1} \\ \frac{\partial E}{\partial E} \frac{\partial \mathscr{d}_{2}}{\partial E} \\ \frac{\partial d_{1}}{e} \frac{\partial d_{2}}{\partial \theta} \frac{\tilde{d}_{2}}{\partial \theta}\end{array}\right|=\left|\begin{array}{cc}-1 / 2 E^{1 / 2} & \sin \theta \\ E^{1 / 2} \cos \theta & -E^{1 / 2} \sin \\ \sin \theta\end{array}\right|=1 / 2\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=1 / 2$

Page 230, Equation 11.17
Type: typos in equation
Replace first occurrence of $N$ with $N^{2}$
(In the second edition, we may add the equation on the red box)

$$
\begin{align*}
\lambda_{N f}^{2} \sigma_{d}^{2} & \rightarrow\left(w_{1}^{2}+w_{2}^{2}+w_{3}^{2}\right)\left(d_{1}^{2}+d_{2}^{2}+d_{3}^{2}\right) \\
\uparrow^{2} & =\left(w_{1}^{2} d_{1}^{2}+w_{2}^{2} d_{2}^{2}+w_{3}^{2} d_{3}^{2}\right)+\left(w_{1}^{2} d_{2}^{2}+w_{2}^{2} d_{3}^{2}+w_{3}^{2} d_{1}^{2}\right)+\left(w_{1}^{2} d_{3}^{2}+w_{2}^{2} d_{1}^{2}+w_{3}^{2} d_{2}^{2}\right) \\
& \approx 3\left(w_{1}^{2} d_{1}^{2}+w_{2}^{2} d_{2}^{2}+w_{3}^{2} d_{3}^{2}\right) \rightarrow N \sum_{i=1}^{N} w_{i}^{2} d_{i}^{2}=N^{2}\left(\frac{1}{N} \sum_{i=1}^{N} w_{i}^{2} d_{i}^{2}\right) \tag{11.17}
\end{align*}
$$

