Lecture 1

Describing Inverse Problems

Syllabus

	•
Lecture 01	Describing Inverse Problems
Lecture 02	Probability and Measurement Error, Part 1
Lecture 03	Probability and Measurement Error, Part 2
Lecture 04	The L ₂ Norm and Simple Least Squares
Lecture 05	A Priori Information and Weighted Least Squared
Lecture 06	Resolution and Generalized Inverses
Lecture 07	Backus-Gilbert Inverse and the Trade Off of Resolution and Variance
Lecture 08	The Principle of Maximum Likelihood
Lecture 09	Inexact Theories
Lecture 10	Nonuniqueness and Localized Averages
Lecture 11	Vector Spaces and Singular Value Decomposition
Lecture 12	Equality and Inequality Constraints
Lecture 13	L_1 , L_{∞} Norm Problems and Linear Programming
Lecture 14	Nonlinear Problems: Grid and Monte Carlo Searches
Lecture 15	Nonlinear Problems: Newton's Method
Lecture 16	Nonlinear Problems: Simulated Annealing and Bootstrap Confidence Intervals
Lecture 17	Factor Analysis
Lecture 18	Varimax Factors, Empircal Orthogonal Functions
Lecture 19	Backus-Gilbert Theory for Continuous Problems; Radon's Problem
Lecture 20	Linear Operators and Their Adjoints
Lecture 21	Fréchet Derivatives
Lecture 22	Exemplary Inverse Problems, incl. Filter Design
Lecture 23	Exemplary Inverse Problems, incl. Earthquake Location
Lecture 24	Exemplary Inverse Problems, incl. Vibrational Problems

Purpose of the Lecture

distinguish forward and inverse problems

categorize inverse problems

examine a few examples

enumerate different kinds of solutions to inverse problems

Part 1

Lingo for discussing the relationship between observations and the things that we want to learn from them

three important definitions

data, $\mathbf{d} = [d_1, d_2, \dots, d_N]^T$

things that are measured in an experiment or observed in nature...

model parameters, $\mathbf{m} = [m_1, m_2, \dots, m_M]^T$

things you want to know about the world ...

quantitative model (or *theory*)

relationship between data and model parameters

data, $\mathbf{d} = [d_1, d_2, \dots, d_N]^T$

gravitational accelerations travel time of seismic waves

model parameters, $\mathbf{m} = [m_1, m_2, ..., m_M]^T$ density seismic velocity

quantitative model (or *theory*) Newton's law of gravity seismic wave equation

m^{est} estimates

Quantitative Model

d^{obs} observations

Understanding the effects of *observational error* is central to Inverse Theory

Part 2

types of quantitative models (or *theories*)

A. Implicit Theory

L relationships between the data and the model are known

$$f_1(\mathbf{d}, \mathbf{m}) = 0$$

$$f_2(\mathbf{d}, \mathbf{m}) = 0$$

$$\vdots$$
 or $\mathbf{f}(\mathbf{d}, \mathbf{m}) = 0$

$$f_L(\mathbf{d}, \mathbf{m}) = 0$$

Example

mass = density × length × width × height $M = \rho \times L \times W \times H$

weight = density × volume

measure mass, d_1 size, d_2 , d_3 , d_4 , want to know density, m_1 $d=[d_1, d_2, d_3, d_4]^T$ and N=4 $m=[m_1]^T$ and M=1

 $d_1 = m_1 d_2 d_3 d_4$ or $d_1 - m_1 d_2 d_3 d_4 = 0$

 $f_1(d,m)=0 \text{ and } L=1$

note

No guarantee that f(d,m)=0contains enough information for *unique* estimate **m**

determining whether or not there is enough is part of the inverse problem

B. Explicit Theory

the equation can be arranged so that **d** is a function of **m**

$$\mathbf{d} = \mathbf{g}(\mathbf{m}) \quad \text{or} \quad \mathbf{d} - \mathbf{g}(\mathbf{m}) = 0$$

L = N one equation per datum

Example

Circumference = $2 \times \text{length} + 2 \times \text{height}$ Area = length × height

C. Linear Explicit Theory

the function g(m) is a matrix **G** times m

 $\mathbf{d} = \mathbf{G}\mathbf{m}$

G has *N* rows and *M* columns

C. Linear Explicit Theory

the function g(m) is a matrix **G** times m

Example

total volume = volume of gold + volume of quartz $V = V_g + V_q$

total mass = density of gold × volume of gold + density of quartz × volume of quartz

$$M = \rho_g \times V_g + \rho_q \times V_q$$

$$V = V_{g} + V_{q}$$

$$M = \rho_{g} \times V_{g} + \rho_{q} \times V_{q}$$
measure
$$V = d_{1}$$

$$M = d_{2}$$
want to know
$$V_{g} = m_{1}$$

$$V_{q} = m_{2}$$
assume
$$\mathbf{m} = [m_{1}, m_{2}]^{T} \text{ and } M = 2$$

$$\rho_{g} \rightarrow \text{known}$$

$$\mathbf{d} = \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \rho_{g} & \rho_{q} \end{pmatrix} \mathbf{m}$$

D. Linear Implicit Theory

The *L* relationships between the data are linear

$$f(d, m) = 0 = F \begin{bmatrix} d \\ m \end{bmatrix} = Fx$$

$$\int L rows$$

$$N+M columns$$

in all these examples **m** is discrete $d_{i} = \sum_{j=1}^{M} G_{ij}m_{j}$ discrete inverse theory

one could have a continuous m(x) instead

$$d_{i} = \int G_{i}(x) m(x) dx$$
continuous inverse theory

in this course we will usually approximate a continuous m(x)

as a discrete vector \mathbf{m} $\mathbf{m} = [m(\Delta x), m(2\Delta x), m(3\Delta x) \dots m(M\Delta x)]^{T}$

but we will spend some time later in the course dealing with the continuous problem directly

Part 3

Some Examples

A. Fitting a straight line to data

matrix formulation

B. Fitting a parabola

$T = a + bt + ct^2$

matrix formulation

note similarity

in MatLab

G=[ones(N,1), t, t.^2];

C. Acoustic Tomography

travel time = length X slowness

collect data along rows and columns

row 1: $T_1 = hs_1 + hs_2 + hs_3 + hs_4$ row 2: $T_2 = hs_5 + hs_6 + hs_7 + hs_8$ \vdots \vdots \vdots $column 4: T_8 = hs_4 + hs_8 + hs_{12} + hs_{16}$

matrix formulation

G

m M=16 ~

In MatLab

G=zeros(N,M);		
for	i = [1:4]	
for	j = [1:4]	
	<pre>% measurements over rows</pre>	
	k = (i-1) * 4 + j;	
	G(i,k) = 1;	
	<pre>% measurements over columns</pre>	
	k = (j-1) * 4 + i;	
	G(i+4,k)=1;	
end		
1		

end

D. X-ray Imaging

theory

$\frac{\mathrm{d}I}{\mathrm{d}s} = -c(x,y) I$

I = Intensity of x-rays (data) *s* = distance *c* = absorption coefficient (model parameters)

matrix formulation

note that **G** is huge 10⁶×10⁶ but it is sparse (mostly zero)

since a beam passes through only a tiny fraction of the total number of pixels

in MatLab

G = spalloc(N, M, MAXNONZEROELEMENTS);

E. Spectral Curve Fitting

single spectral peak 0.5 0.4 area, A 0.3 p(z)0.2 width, c 0.1 0 0 10 position, f

 $\mathbf{d} = \mathbf{g}(\mathbf{m})$

F. Factor Analysis

$$\begin{bmatrix} sample \\ composition \end{bmatrix} = \sum_{\substack{end \\ members}} \begin{bmatrix} amount of \\ end member \end{bmatrix} \begin{bmatrix} end member \\ composition \end{bmatrix}$$

$$\mathbf{d} = \mathbf{g}(\mathbf{m})$$

Part 4

What kind of solution are we looking for ?

A: Estimate of model parameters

meaning numerical values

 $m_1 = 10.5$ $m_2 = 7.2$

But we really need confidence limits, too

 $\begin{array}{ll} m_1 = 10.5 \pm 0.2 & m_1 = 10.5 \pm 22.3 \\ m_2 = 7.2 \pm 0.1 & \text{or} & m_2 = 7.2 \pm 9.1 \end{array}$

completely different implications!

B: probability density functions

if $p(m_1)$ simple not so different than confidence intervals

C: localized averages

$A = 0.2m_9 + 0.6m_{10} + 0.2m_{11}$ might be better determined than either m_9 or m_{10} or m_{11} individually

Is this useful?

Do we care about $A = 0.2m_9 + 0.6m_{10} + 0.2m_{11}$?

Maybe ...

Suppose if **m** is a discrete approximation of m(x)

average "localized" in the vicinity of X_{10}

Localized average mean can't determine m(x) at x=10but can determine average value of m(x) near x=10

Such a localized average might very well be useful