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Purpose of the Lecture

distinguish forward and inverse problems

categorize inverse problems

examine a few examples

enumerate different kinds of solutions to inverse problems



Part 1

Lingo for discussing the relationship 

between observations and the things 

that we want to learn from them



three important definitions



things that are measured in an 

experiment or observed in nature…

data, d = [d1, d2, … dN]T

things you want to know about the world …

model parameters, m = [m1, m2, … mM]T

relationship between data and model parameters

quantitative model (or theory)



gravitational accelerations

travel time of seismic waves

data, d = [d1, d2, … dN]T

model parameters, m = [m1, m2, … mM]T

quantitative model (or theory)

density

seismic velocity

Newton’s law of gravity

seismic wave equation



Quantitative Model

Quantitative Model

mest dpre

mest dobs

Forward Theory

Inverse Theory

estimates predictions

observationsestimates



Quantitative Model

Quantitative Model

mtrue dpre

dobs

≠

mest

due to 

observational 

error



Quantitative Model

Quantitative Model

mtrue dpre

dobs

≠

mest

due to 

observational 

error
≠

due to error 

propagation



Understanding the effects of

observational error

is central to Inverse Theory



Part 2 

types of quantitative models

(or theories)



A. Implicit Theory

L relationships between the data and the model are known



Example

mass = density  ⨉  length ⨉ width ⨉  height

M

H

M = ρ ⨉  L ⨉ W ⨉  H

L

ρ



weight = density  ⨉  volume

measure

mass, d1

size, d2, d3, d4,

want to know

density, m1

d1 = m1 d2 d3 d4    or d1 - m1 d2 d3 d4 = 0    

d=[d1, d2, d3, d4]T and  
N=4

m=[m1]T and  M=1

f1(d,m)=0   and  L=1



note

No guarantee that

f(d,m)=0

contains enough information

for unique estimate m

determining whether or not there is enough

is part of the inverse problem



B. Explicit Theory

the equation can be arranged so that d is a function of m

L = N one equation per datum

d = g(m) or    d - g(m) = 0



Example

Circumference = 2 ⨉  length + 2 ⨉ height

L

rectangle H

Area = length ⨉ height



C = 2L+2H

measure
C=d1
A=d2

want to know
L=m1
H=m2

d=[d1, d2]T and  N=2

m=[m1, m2]T and  M=2

Circumference = 2 ⨉  length + 2 ⨉ height

Area = length ⨉ height

A=LH

d1 =   2m1 +  2m2

d2 m1m2 d=g(m)



C. Linear Explicit Theory

the function g(m) is a matrix G times m

G has  N rows and M columns

d = Gm



C. Linear Explicit Theory

the function g(m) is a matrix G times m

G has  N rows and M columns

d = Gm

“data kernel”



Example

M = ρg ⨉  V g+ ρq ⨉  V q

gold
quartz

total mass = density of gold  ⨉  volume of gold
+ density of quartz  ⨉  volume of quartz

V = V g+ V q

total volume = volume of gold + volume of quartz



M = ρg ⨉  Vg+ ρq ⨉  V q

V = V g+ V q

measure
V = d1
M = d2

want to know
Vg =m1
Vq =m2

assume
ρg
ρg

d=[d1, d2]T and  N=2

m=[m1, m2]T and  M=2

d =
1 1

ρg ρq

m

known



D. Linear Implicit Theory

The L relationships between the data are linear

L rows

N+M columns



in all these examples m is discrete

one could have a continuous m(x) instead

discrete inverse theory

continuous inverse theory



as a discrete vector m

in this course we will usually approximate 

a continuous m(x)

m = [m(Δx), m(2Δx), m(3Δx) … m(MΔx)]T

but we will spend some time later in 

the course dealing with the continuous 

problem directly 



Part 3

Some Examples
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A. Fitting a straight line to data

T = a + bt



each data point
is predicted by a 

straight line



matrix formulation

d           =       G           m 
M=2



B. Fitting a parabola

T = a + bt+ ct2



each data point
is predicted by a 

strquadratic curve



matrix formulation

d           =       G           m 
M=3



straight line

note similarity

parabola



in MatLab

G=[ones(N,1), t, t.^2];



C. Acoustic Tomography

1 2 3 4

5 6 7 8

13 14 15 16

h

h

source, S receiver, R

travel time = length ⨉ slowness



collect data along rows and columns



matrix formulation

d           =                 G                              m 

M=16N=8



In MatLab

G=zeros(N,M);

for i = [1:4]

for j = [1:4]

% measurements over rows

k = (i-1)*4 + j;

G(i,k)=1;

% measurements over columns

k = (j-1)*4 + i;

G(i+4,k)=1;

end

end



D. X-ray Imaging

S

R1

R2

R3

R4
R5

enlarged 

lymph node

(A) (B)



theory

I = Intensity of x-rays (data)
s = distance

c = absorption coefficient (model parameters)



Taylor Series
approximation



Taylor Series
approximation

discrete pixel
approximation



Taylor Series
approximation

discrete pixel
approximation

length of 
beam i in 
pixel jd                 =      G m 



d           =                 G                              m 

matrix formulation

M≈106
N≈106



note that G is huge

106⨉106

but it is sparse

(mostly zero)

since a beam passes through only a 

tiny fraction of the total number of 

pixels



in MatLab

G = spalloc( N, M, MAXNONZEROELEMENTS);



E. Spectral Curve Fitting
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q spectral peaks

“Lorentzian”

d = g(m)
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F. Factor Analysis



d =   g(m)



Part 4

What kind of solution are we 

looking for ?



A:  Estimate of model parameters

meaning numerical values

m1 = 10.5

m2 = 7.2



But we really need confidence 

limits, too

m1 = 10.5 ± 0.2
m2 = 7.2 ± 0.1

m1 = 10.5 ± 22.3
m2 = 7.2 ± 9.1

or

completely different implications!



B:  probability density functions

if p(m1) simple

not so different than confidence intervals
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m is about 
5

plus or 
minus 1.5

m is either
about 3

plus of minus 1
or about 8

plus or minus 1
but that’s less 

likely

we don’t really 
know anything 
useful about m



C:  localized averages

A = 0.2m9 + 0.6m10 + 0.2m11

might be better determined than either

m9 or m10 or m11 individually



Is this useful?

Do we care about

A = 0.2m9 + 0.6m10 + 0.2m11

?

Maybe …



Suppose 

if m is a discrete approximation of m(x)

m(x)

x

m10 m11m9



m(x)

x

m10 m11m9

A= 0.2m9 + 0.6m10 + 0.2m11

weighted average of m(x)
in the vicinity of x10

x10



m(x)

x

m10 m11m9

average “localized’

in the vicinity of x10

x10
weights

of weighted 
average



Localized average mean

can’t determine m(x) at x=10
but can determine

average value of m(x) near x=10 

Such a localized average might very 

well be useful


