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Purpose of the Lecture

review random variables and their probability density 

functions

introduce correlation and the multivariate Gaussian 

distribution

relate error propagation to functions of random variables



Part 1

random variables and their 

probability density functions



d=?

random variable, d

no fixed value until it is realized

d=?

indeterminate

d=1.04

indeterminate

d=0.98



random variables have systematics

tendency to takes on some values more often 

than others
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in general

probability is the integral

probability that d is between 

d1 and d2



the probability that d has some value is 

100% or unity

probability that d is between 

its minimum and maximum 

bounds,  dmin and dmax



How do these two p.d.f.’s differ?
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Summarizing a probability density 

function

typical value

“center of the p.d.f.”

amount of scatter around the typical value

“width of the p.d.f.”
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Several possibilities for a typical value

point beneath the 

peak or “maximum 

likelihood point” or 

“mode”
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in half or “median”
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can all be different

dML ≠ dmedian ≠ <d>



formula for

“mean” or “expected value”

<d>



≈ s

d

ds

≈ s
Ns

N

data

histogram

Ns

ds

p

≈ s P(ds)
probability distribution

step 1: usual formula for mean

step 2: replace data with its histogram

step 3: replace histogram with probability distribution.

<d>

<d>

<d>



If the data are continuous, use 

analogous formula containing an 

integral: 

≈ s P(ds)<d>

<d>



quantifying width



This function grows away from the typical value:

q(d) = (d-<d>)2

so the function q(d)p(d) is

small if most of the area is near <d> , that is, a narrow p(d)

large if most of the area is far from <d> , that is, a wide p(d)

so quantify width as the area under q(d)p(d)



0 5 10
0

5

10

d

q
(d

)

0 5 10
0

0.5

1

d
p
(d

)

0 5 10
0

0.5

1

d

q
(d

)*
p
(d

)

0 5 10
0

5

10

d

q
(d

)

0 5 10
0

0.5

1

d

p
(d

)

0 5 10
0

0.5

1

d

q
(d

)*
p
(d

)

(C)(B)(A)

(F)(E)(D)



variance

width is actually square root of variance, that is, σ

mean



estimating mean and variance from data



estimating mean and variance from data

usual formula 

for “sample 

mean”

usual formula 

for square of 

“sample 

standard 

deviation”



MabLab scripts for mean and variance

dbar = Dd*sum(d.*p);

q = (d-dbar).^2; 

sigma2 = Dd*sum(q.*p); 

sigma = sqrt(sigma2); 

from tabulated p.d.f. p

from realizations of data

dbar = mean(dr);

sigma = std(dr);

sigma2 = sigma^2;



two important probability density 

functions:

uniform

Gaussian (or Normal)



uniform p.d.f.

d

dmin dmax

p(d)

1/(dmax- dmin)

probability is the same everywhere 

in the range of possible values

box-shaped function



Large probability near the mean, d.  

Variance is σ2.
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bell-shaped function



probability between <d>±nσ

Gaussian p.d.f.



Part 2

correlated errors



uncorrelated random variables

no pattern of between values of one 
variable and values of another

when d1 is higher than its mean
d2 is higher or lower than its mean

with equal probability
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in uncorrelated case

joint p.d.f.
is just the product of individual p.d.f.’s
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formula for covariance

+ positive correlation high d1 high d2
- negative correlation high d1 low d2



joint p.d.f.

mean is a vector

covariance is a symmetric matrix

diagonal elements: variances

off-diagonal elements: covariances



estimating covariance from a table D of 

data

Dki: realization k of data-type i

in MatLab, C=cov(D)



univariate p.d.f. formed from joint p.d.f.

p(d) → p(di)

behavior of di irrespective of the other ds

integrate over 

everything but di



d1

d2

d1

integrate 

over d2

integrate over 

d1

d2

p(d1,d2)

p(d2)

p(d1)



multivariate Gaussian (or Normal) p.d.f.



covariance 

matrix

mean



Part 3

functions of random variables



functions of random variables

data with 

measurement 

error 

data analysis 

process

inferences 

with 

uncertainty



functions of random variables

given p(d)

with m=f(d)

what is p(m) ?



univariate p.d.f.

use the chair rule



univariate p.d.f.

use the chair rule

rule for 
transforming a 
univariate p.d.f.



multivariate p.d.f.

determinant 
of matrix 
with 
elements 
∂di/∂mj

Jacobian

determinant



multivariate p.d.f.

rule for 
transforming a 
multivariate 
p.d.f.

Jacobian

determinant



simple example

data with 

measurement 

error 

data analysis 

process

inferences 

with 

uncertainty

one datum, d
uniform p.d.f.

0<d<1

m = 2d
one model 

parameter, m



m=2d  and d=½m

d=0 → m=0

d=1 → m=2

dd/dm = ½

p(d ) =1

p(m ) = ½



p(d)

0 1 2

d0

1

p(m)

0 1 2

m0

1



another simple example

data with 

measurement 

error 

data analysis 

process

inferences 

with 

uncertainty

one datum, d
uniform p.d.f.

0<d<1

m = d2
one model 

parameter, m



m=d2 and d=m½

d=0 → m=0

d=1 → m=1

dd/dm = ½m-½

p(d ) =1

p(m ) = ½ m-½
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multivariate example

data with 

measurement 

error 

data analysis 

process

inferences 

with 

uncertainty

2 data, d1 , d2
uniform p.d.f.

0<d<1

for both

m1 = d1+d2

m2 = d2-d2

2 model 

parameters, 

m1 and m2
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p(d ) = 1

m=Md with

d=M-1m   so ∂d/ ∂ m = M-1 and J= |det(M-1)|= ½

and |det(M)|=2

p(m ) = ½
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Note that the 

shape in m is 

different than 

the shape in d
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moral

p(m) can behavior quite differently from p(d)


