Lecture 2

Probability and Measurement Error, Part 1

Syllabus

	•	
Lecture 01	Describing Inverse Problems	
Lecture 02	Lecture 02 Probability and Measurement Error, Part 1	
Lecture 03	Probability and Measurement Error, Part 2	
Lecture 04	The L ₂ Norm and Simple Least Squares	
Lecture 05	A Priori Information and Weighted Least Squared	
Lecture 06	Resolution and Generalized Inverses	
Lecture 07	Backus-Gilbert Inverse and the Trade Off of Resolution and Variance	
Lecture 08	The Principle of Maximum Likelihood	
Lecture 09	Inexact Theories	
Lecture 10	Nonuniqueness and Localized Averages	
Lecture 11	Vector Spaces and Singular Value Decomposition	
Lecture 12	Equality and Inequality Constraints	
Lecture 13	L_1 , L_{∞} Norm Problems and Linear Programming	
Lecture 14	Nonlinear Problems: Grid and Monte Carlo Searches	
Lecture 15	Nonlinear Problems: Newton's Method	
Lecture 16	Nonlinear Problems: Simulated Annealing and Bootstrap Confidence Intervals	
Lecture 17	Factor Analysis	
Lecture 18	Varimax Factors, Empircal Orthogonal Functions	
Lecture 19	Backus-Gilbert Theory for Continuous Problems; Radon's Problem	
Lecture 20	Linear Operators and Their Adjoints	
Lecture 21	Fréchet Derivatives	
Lecture 22	Exemplary Inverse Problems, incl. Filter Design	
Lecture 23	Exemplary Inverse Problems, incl. Earthquake Location	
Lecture 24	Exemplary Inverse Problems, incl. Vibrational Problems	

Purpose of the Lecture

review random variables and their probability density functions

introduce correlation and the multivariate Gaussian distribution

relate error propagation to functions of random variables

Part 1

random variables and their probability density functions

random variable, d

no fixed value until it is realized

indeterminate

indeterminate

random variables have systematics

tendency to takes on some values more often than others

Nrealization of data

in general probability is the integral

the probability that d has some value is 100% or unity

Summarizing a probability density function

typical value "center of the p.d.f."

amount of scatter around the typical value "width of the p.d.f."

Several possibilities for a typical value

can all be different

 $d_{ML} \neq d_{median} \neq \langle d \rangle$

formula for "mean" or "expected value"

step 1: usual formula for mean

$$\langle d \rangle = \frac{1}{N} \sum_{i=0}^{N} d_i \qquad - \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet d_{\text{data}}$$

step 2: replace data with its histogram
$$\langle d \rangle \approx \frac{1}{N} \sum_{S=0}^{M} d^{(S)} N_{S} \xrightarrow{N_{S}} d^{(S)} N_{S} \xrightarrow{N_{S}} d_{S}$$
histogram

step 3: replace histogram with probability distribution.

$$\langle d \rangle \approx \sum_{s=0}^{M} d^{(s)} \frac{N_s}{N}$$

$$\approx \sum_{s=0}^{M} d^{(s)} P(d_s) \xrightarrow{p} d_s$$
probability distribution

If the data are continuous, use analogous formula containing an integral:

quantifying width

This function grows away from the typical value:

$$q(d) = (d - \langle d \rangle)^2$$

so the function q(d)p(d) is

small if most of the area is near $\langle d \rangle$, that is, a narrow p(d)

large if most of the area is far from $\langle d \rangle$, that is, a wide p(d)

so quantify width as the area under q(d)p(d)

variance

width is actually square root of variance, that is, σ

estimating mean and variance from data

$$\langle d \rangle^{est} = \frac{1}{N} \sum_{i=1}^{N} d_i \quad \text{and} \quad (\sigma^2)^{est} = \frac{1}{N-1} \sum_{i=1}^{N} (d_i - \langle d \rangle^{est})^2$$

estimating mean and variance from data

MabLab scripts for mean and variance

from tabulated p.d.f. p

dbar = Dd*sum(d.*p); q = (d-dbar).^2; sigma2 = Dd*sum(q.*p); sigma = sqrt(sigma2);

from realizations of data

dbar = mean(dr); sigma = std(dr); sigma2 = sigma^2;

two important probability density functions:

uniform

Gaussian (or Normal)

uniform p.d.f.

probability is the same everywhere in the range of possible values

Gaussian (or "Normal") p.d.f.

$$p(d) = \frac{1}{(2\pi)^{\frac{1}{2}\sigma}} \exp\left[-\frac{(d-\langle d\rangle)^2}{2\sigma^2}\right]$$

Large probability near the mean, d. Variance is σ^2 .

Gaussian p.d.f. probability between $< d > \pm n\sigma$

п	P, %
1	68.27
2	95.45
3	<i>99.73</i>

Part 2

correlated errors

uncorrelated random variables

no pattern of between values of one variable and values of another

when d_1 is higher than its mean d_2 is higher or lower than its mean with equal probability

joint probability density function uncorrelated case

in uncorrelated case

joint p.d.f. is just the product of individual p.d.f.'s

 $p(\mathbf{d}) = p(d_1) p(d_2) p(d_3) \cdots p(d_N)$

formula for covariance

$$\operatorname{cov}(d_1, d_2) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left[d_1 - \langle d_1 \rangle \right] \left[d_2 - \langle d_2 \rangle \right] p(\mathbf{d}) \, \mathrm{d}d_1 \, \mathrm{d}d_2$$

+ positive correlation high d₁ high d₂
- negative correlation high d₁ low d₂

joint p.d.f. mean is a vector covariance is a symmetric matrix

$$\langle d \rangle_i = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} d_i p(\mathbf{d}) \, \mathrm{d}d_1 \cdots \mathrm{d}d_N$$

 $[\operatorname{cov} \mathbf{d}]_{ij} = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} [d_i - \langle d_i \rangle] [d_j - \langle d_j \rangle] p(\mathbf{d}) \, \mathrm{d}d_1 \cdots \mathrm{d}d_N$ diagonal elements: variances off-diagonal elements: covariances

estimating covariance from a table D of data

$$[\operatorname{cov} \mathbf{d}]_{ij}^{est} = \frac{1}{K} \sum_{k=1}^{K} (D_{ki} - \langle D_i \rangle^{est}) (D_{kj} - \langle D_j \rangle^{est})$$

 D_{ki} : realization k of data-type i

in MatLab, C=cov(D)

univariate p.d.f. formed from joint p.d.f.

$p(d) \rightarrow p(d_i)$ behavior of d_i irrespective of the other ds

multivariate Gaussian (or Normal) p.d.f.

$$p(\mathbf{d}) = \frac{1}{(2\pi)^{\frac{N}{2}}} \exp\left(-\frac{1}{2} \left[\mathbf{d} - \langle \mathbf{d} \rangle\right]^{\mathrm{T}} \left[\operatorname{cov} \mathbf{d}\right]^{-1} \left[\mathbf{d} - \langle \mathbf{d} \rangle\right]\right)$$

Part 3

functions of random variables

functions of random variables

functions of random variables

given $p(\mathbf{d})$

with m = f(d)

what is $p(\mathbf{m})$?

univariate p.d.f. use the chair rule

$$1 = \int_{d_{\min}}^{d_{\max}} p(d) \, \mathrm{d}d = \int_{d(m_{\min})}^{d(m_{\max})} p[d(m)] \frac{\mathrm{d}d}{\mathrm{d}m} \mathrm{d}m = \int_{m_{\min}}^{m_{\max}} p(m) \, \mathrm{d}m$$

univariate p.d.f. use the chair rule

$$1 = \int_{d_{\min}}^{d_{\max}} p(d) \, \mathrm{d}d = \int_{d(m_{\min})}^{d(m_{\max})} p[d(m)] \frac{\mathrm{d}d}{\mathrm{d}m} \, \mathrm{d}m = \int_{m_{\min}}^{m_{\max}} p(m) \, \mathrm{d}m$$

$$p(m) = p[m(d)] \left| \frac{dd}{dm} \right|$$

rule for
transforming a
univariate p.d.f.

multivariate p.d.f.

$$1 = \int p(\mathbf{d}) \, d^{N}d = \int p[\mathbf{d}(\mathbf{m})] \left| \frac{\partial \mathbf{d}}{\partial \mathbf{m}} \right| \, d^{N}m = \int p[\mathbf{d}(\mathbf{m})] J(\mathbf{m}) \, d^{N}m = \int p(\mathbf{m}) \, d^{N}m$$
Jacobian determinant
$$p(\mathbf{m}) = p[\mathbf{d}(\mathbf{m})] \left| \frac{\partial \mathbf{d}}{\partial \mathbf{m}} \right| = p[\mathbf{d}(\mathbf{m})] J(\mathbf{m})$$
determinant
of matrix
with
elements
$$\frac{\partial d_{i}}{\partial m_{j}}$$

multivariate p.d.f.

$$1 = \int p(\mathbf{d}) \, \mathbf{d}^{N} d = \int p[\mathbf{d}(\mathbf{m})] \left| \frac{\partial \mathbf{d}}{\partial \mathbf{m}} \right| \, \mathbf{d}^{N} m = \int p[\mathbf{d}(\mathbf{m})] J(\mathbf{m}) \, \mathbf{d}^{N} m = \int p(\mathbf{m}) \, \mathbf{d}^{N} m$$

$$p(\mathbf{m}) = p[\mathbf{d}(\mathbf{m})] \left| \frac{\partial \mathbf{d}}{\partial \mathbf{m}} \right| = p[\mathbf{d}(\mathbf{m})] J(\mathbf{m})$$

$$f(\mathbf{m}) = p[\mathbf{d}(\mathbf{m})] \left| \frac{\partial \mathbf{d}}{\partial \mathbf{m}} \right| = p[\mathbf{d}(\mathbf{m})] J(\mathbf{m})$$

$$f(\mathbf{m}) = p[\mathbf{d}(\mathbf{m})] \left| \frac{\partial \mathbf{d}}{\partial \mathbf{m}} \right| = p[\mathbf{d}(\mathbf{m})] J(\mathbf{m})$$

$$f(\mathbf{m}) = p[\mathbf{d}(\mathbf{m})] \left| \frac{\partial \mathbf{d}}{\partial \mathbf{m}} \right| = p[\mathbf{d}(\mathbf{m})] J(\mathbf{m})$$

$$f(\mathbf{m}) = p[\mathbf{d}(\mathbf{m})] \left| \frac{\partial \mathbf{d}}{\partial \mathbf{m}} \right| = p[\mathbf{d}(\mathbf{m})] J(\mathbf{m})$$

simple example

m=2d and $d=\frac{1}{2}m$ $d=0 \rightarrow m=0$ $d=1 \rightarrow m=2$ $dd/dm = \frac{1}{2}$

$$p(d) = 1$$

$$p(m) = p[d(m)] \left| \frac{\mathrm{d}d}{\mathrm{d}m} \right|$$

$$p(m) = \frac{1}{2}$$

another simple example

 $m=d^2$ and $d=m^{\frac{1}{2}}$ $d=0 \rightarrow m=0$ $d=1 \rightarrow m=1$ $dd/dm = \frac{1}{2}m^{-\frac{1}{2}}$

$$p(d) = 1$$

$$p(m) = p[d(m)] \left| \frac{\mathrm{d}d}{\mathrm{d}m} \right|$$

$$p(m) = \frac{1}{2} m^{-\frac{1}{2}}$$

multivariate example

$$2 \text{ data, } d_1, d_2$$
uniform p.d.f.
$$0 \le d \le 1$$
for both
$$m_1 = d_1 + d_2$$

$$m_2 = d_2 - d_2$$

$$m_1 = d_1 + d_2$$

$$m_2 = d_2 - d_2$$

$$m_1 = d_1 + d_2$$

$$m_2 = d_2 - d_2$$

$$m_1 = d_1 + d_2$$

$$m_1 = d_1 + d_2$$

$$m_1 = d_1 + d_2$$

$$m_2 = d_2 - d_2$$

m=Md with
$$M = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 and $|\det(M)|=2$
d=M⁻¹m so $\partial d / \partial m = M^{-1}$ and J= $|\det(M^{-1})| = \frac{1}{2}$

$$p(\mathbf{d}) = 1$$

$$p(\mathbf{m}) = p[\mathbf{d}(\mathbf{m})] \left| \frac{\partial \mathbf{d}}{\partial \mathbf{m}} \right| = p[\mathbf{d}(\mathbf{m})] J(\mathbf{m})$$

$$p(\mathbf{m}) = \frac{1}{2}$$

Note that the shape in **m** is different than the shape in **d**

The shape is a square with sides of length $\sqrt{2}$. The amplitude is $\frac{1}{2}$. So the area is $\frac{1}{2} \times \sqrt{2} \times \sqrt{2} = 1$

moral

$p(\mathbf{m})$ can behavior quite differently from $p(\mathbf{d})$