
Lecture 3

Probability and Measurement Error, 

Part 2



Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2 

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches 

Lecture 15 Nonlinear Problems: Newton’s Method 

Lecture 16 Nonlinear Problems:  Simulated Annealing and Bootstrap Confidence Intervals 

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empircal Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems



Purpose of the Lecture

review key points from last lecture

introduce conditional p.d.f.’s and Bayes theorem

discuss confidence intervals

explore ways to compute realizations of random variables



Part 1

review of the last lecture



Joint probability density functions

p(d) =p(d1,d2,d3,d4…dN)

probability that the data are near d

p(m) =p(m1,m2,m3,m4…mM)

probability that the model parameters are near m
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summarizing a joint p.d.f.

mean is a vector

covariance is a symmetric matrix

diagonal elements: variances

off-diagonal elements: covariances



data with 

measurement 

error 

data analysis 

process

inferences 

with 

uncertainty

error in measurement

implies

uncertainty in inferences



functions of random variables

given p(d)

with m=f(d)

what is p(m) ?



given p(d) and m(d)
then

det
∂d1/∂m1 ∂d1/∂m2 …

∂d2/∂m1 ∂d2/∂m2 …

………

Jacobian determinant



multivariate Gaussian example

N data, d
Gaussian p.d.f.

m=Md+v
linear relationship

M=N model 

parameters, m



given

and the linear relation

m=Md+v

what’s p(m) ?



answer

with



answer

with
also Gaussian

rule for error 

propagation



rule for error propagation

holds even when M≠N
and for non-Gaussian distributions



rule for error propagation

holds even when M≠N
and for non-Gaussian distributions

memorize



example

given

given N uncorrelated Gaussian data with 

uniform variance σd
2

and formula for sample mean

i



[cov d ] = σd
2 I and    

[cov m ] = σd
2 MMT = σd

2 N/N2 = (σd
2 /N)I = σm

2 I
or

σm
2 = (σd

2 /N)



σm=  σd /√N

so

error of sample mean

decreases with number of data

decrease is rather slow , though,
because of the square root



Part 2

conditional p.d.f.’s and Bayes theorem



joint p.d.f. p(d1,d2)
probability that d1  is near a given value

and

probability that d2  is near a given value

conditional p.d.f. p(d1|d2)
probability that d1  is near a given value

given that we know that

d2  is near a given value
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so, to convert a

joint p.d.f. p(d1,d2)
to a 

conditional p.d.f.’s p(d1|d2)

evaluate the joint p.d.f. at d2

and

normalize the result to unit area





area under 
p.d.f. for 
fixed d2





similarly

conditional p.d.f. p(d2|d1)
probability that d2 is near a given 

value

given that we know that

d1  is near a given value



putting both together



rearranging to achieve a result called

Bayes theorem



rearranging to achieve a result called

Bayes theorem

three alternate ways to write p(d2)

three alternate ways to write p(d1)



Important

p(d1|d2) ≠ p(d2|d1)

example
probability that you will die given that you have pancreatic 

cancer is 90%
(fatality rate of pancreatic cancer is very high)

but
probability that a dead person died of pancreatic cancer is 

1.3%
(most people die of something else)



Example using Sand

discrete values

d1: grain size S=small B=Big

d2: weight L=Light H=heavy  

joint p.d.f.



univariate p.d.f.’s

joint p.d.f.



univariate p.d.f.’s

joint p.d.f.

most 
grains are 

small

most 
grains are 

light

most grains are 

small and light



conditional p.d.f.’s

if a grain is 
light it’s 
probably 

small



conditional p.d.f.’s

if a grain is 

heavy it’s 

probably big



conditional p.d.f.’s

if a grain is 
small it’s 
probabilty

light



conditional p.d.f.’s

if a grain is big 

the chance is 

about even that 

its light or heavy



If a grain is big the chance is about 

even that its light or heavy

?

What’s going on?



Bayes theorem

provides the answer



Bayes theorem

provides the answer
probability of a 
big grain given 

it’s heavy

the probability of 
a big grain

=
probability of a 
big grain given 

it’s light
+

probability of a 
big grain given its 

heavy



Bayes theorem

provides the answer

only a few percent of 

light grains are big

but

there are a lot of light 

grains

this term 

dominates the 

result



before the observation: probability that its heavy 

is 10%, because heavy grains make up 10% of 

the total.

observation: the grain is big

after the observation: probability that the grain is 

heavy has risen to 49.74% 

Bayesian Inference

use observations to update probabilities



Part 2

Confidence Intervals



suppose that we encounter in the 

literature the result

m1 = 50 ± 2 (95%)   and   m2 = 30 ± 1 (95%) 

what does it mean?



joint p.d.f.

p(m1,m2)

m1 = 50 ± 2 (95%)   and   m2 = 30 ± 1 (95%) 

compute mean <m1> 
and variance σ1

2

univariate p.d.f.
p(m2)

univariate p.d.f.
p(m1)

compute mean <m2> 
and variance σ2

2

<m1> 2σ1 <m2> 2σ2



m1 = 50 ± 2 (95%)   and   m2 = 30 ± 1 (95%) 

irrespective of the value of m2, there is a 

95% chance that m1 is between 48 and 52,

irrespective of the value of m1, there is a 

95% chance that m1 is between 29 and 31,



So what’s the probability that both m1

and m2 are within 2σ of their means?

That will depend upon the degree of 

correlation

For uncorrelated model parameters, it’s 

(0.95)2 = 0.90
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Suppose that you read a paper 

which states values and confidence 

limits for 100 model parameters

What’s the probability that they all 

fall within their 2σ bounds?



Part 4

computing realizations of random 

variables



Why?

create noisy “synthetic” or “test” data

generate a suite of hypothetical models, all 

different from one another



MatLab function random()

can do many different p.d.f’s



But what do you do if MatLab doesn’t 

have the one you need?



It requires that you:

1) evaluate the formula for p(d)
2) already have a way to generate 

realizations of Gaussian and Uniform 

p.d.f.’s

One possibility is to use the 

Metropolis-Hasting

algorithm



goal: generate a length N vector d that 

contains realizations of p(d)



steps:
set di with i=1 to some reasonable value
now for subsequent di+1

generate a proposed successor d’
from a conditional p.d.f. q(d’|di)
that returns a value near di

generate a number α from a uniform
p.d.f. on the interval (0,1)

accept d’ as di+1 if
else set di+1= di

repeat



A commonly used choice 

for the  conditional p.d.f. is

here σ is chosen to represent the sixe of the neighborhood, 

the typical distance of di+1 from di



example

exponential p.d.f.

p(d)=½c exp(-|d|/c)
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