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Purpose of the Lecture

Introduce the concept of prediction error and the norms that 
quantify it

Develop the Least Squares Solution

Develop the Minimum Length Solution

Determine the covariance of these solutions



Part 1

prediction error and norms



The Linear Inverse Problem

Gm = d



The Linear Inverse Problem

Gm = d

data
model 

parameters

data kernel



Gmest = dpre

an estimate of the model parameters 

can be used to predict the data

but the prediction may not match the 
observed data

(e.g. due to observational error)

dpre ≠ dobs



e = dobs -dpre

this mismatch leads us to define the 

prediction error

e = 0

when the model parameters exactly predict 
the data
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example of prediction error
for line fit to data



“norm”

rule for quantifying the overall size 

of the error vector e

lot’s of possible ways to do it



Ln family of norms



Ln family of norms

Euclidian length
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limiting case



guiding principle for solving an inverse 

problem

find the mest

that minimizes E=||e||

with

e = dobs –dpre

and

dpre = Gmest



but which norm to use?

it makes a difference!
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Answer is related to the distribution of 

the error.  Are outliers common or rare?

long tails

outliers common

outliers unimportant

use low norm

gives low weight to outliers

short tails

outliers uncommon

outliers important

use high norm

gives high weight to outliers



as we will show later in the class …

use L2 norm 

when data has

Gaussian-distributed error



Part 2

Least Squares Solution to Gm=d



L2 norm of error is its Euclidian length

so E is the square of the Euclidean length
mimimize E

Principle of Least Squares

= eTe



Least Squares Solution to Gm=d

minimize E with respect to mq

∂E/∂mq = 0



so, multiply out 



first term



first term

∂mj /∂mq = δjq

since mj and mq are 
independent variables



ai = Σj δij bj = bi

Kronecker delta

(elements of identity matrix)

[I]ij = δij

a = Ib = b
ai = Σj δij bj = bi

i



second term

third term



putting it all together

or



presuming [GTG] has an inverse

Least Square Solution



presuming [GTG] has an inverse

Least Square Solution

memorize



example

straight line problem

Gm = d









in practice,

no need to multiply matrices 

analytically

just use MatLab

mest = (G’*G)\(G’*d); 



another example

fitting a plane surface

Gm = d



z,
 k

m



Part 3

Minimum Length Solution



but Least Squares will fail

when [GTG] has no inverse
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zero determinant

hence no inverse



Least Squares will fail

when more than one solution 

minimizes the error

the inverse problem is 

“underdetermined”



R

S

21

simple example of an underdetermined 

problem



What to do?

use another guiding principle

“a priori” information about the 

solution



in the case

choose a solution that is small

minimize ||m||2



simplest case

“purely underdetermined”

more than one solution has zero error



minimize L=||m||2
2

with the constraint that e=0



Method of Lagrange Multipliers

minimize L with constraints

C1=0, C2=0, …

equivalent to

minimize Φ=L+λ1C1+λ2C2+…
with no constraints

λs called “Lagrange Multipliers”



 

e(x,y)=0

x

y

L (x,y)
(x0,y0)





2m=GT λ and  Gm=d

½GGT λ =d

λ = 2[GGT ]-1d

m=GT [GGT ]-1d



presuming [GGT] has an inverse

Minimum Length Solution

mest=GT [GGT ]-1d



presuming [GGT] has an inverse

Minimum Length Solution

mest=GT [GGT ]-1d

memorize



Part 4

Covariance



Least Squares Solution
mest= [GTG ]-1GTd

Minimum Length Solution
mest=GT [GGT ]-1d

both have the linear form
m=Md



but if
m=Md

then
[cov m] = M [cov d] MT

when data are uncorrelated with uniform 
variance σd

2

[cov d]=σd
2I

so



Least Squares Solution
[cov m] = [GTG ]-1GTσd

2 G[GTG ]-1

[cov m] = σd
2 [GTG ]-1

Minimum Length Solution
[cov m] = GT [GGT ]-1 σd

2 [GGT ]-1G
[cov m] = σd

2 GT [GGT ]-2G



Least Squares Solution
[cov m] = [GTG ]-1GTσd

2 G[GTG ]-1

[cov m] = σd
2 [GTG ]-1

Minimum Length Solution
[cov m] = GT [GGT ]-1 σd

2 [GGT ]-1G
[cov m] = σd

2 GT [GGT ]-2G

memorize



where to obtain the value of σd
2

a priori value – based on knowledge of accuracy 

of measurement technique

my ruler has 1 mm divisions, so σd≈½mm

a posteriori value – based on prediction error



variance critically dependent on 

experiment design (structure of G)
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which is the better way to weigh a set of boxes ?
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Relationship between

[cov m] and Error Surface



Taylor Series expansion of the 

error about its minimum



Taylor Series expansion of the 

error about its minimum

curvature matrix

with elements

∂2E/ ∂mi∂mj



for a linear problem

curvature is related to GTG

E = (Gm-d)T(Gm-d) =

mT[GTG]m-dTGm-mTGTd+dTd

so

∂2E/ ∂mi∂mj = [GTG] ij



and since

[cov m] = σd
2 [GTG]-1

we have



the sharper the minimum

the higher the curvature

the smaller the covariance


