Lecture 4

The L, Norm
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Syllabus

Describing Inverse Problems

Probability and Measurement Error, Part 1

Probability and Measurement Error, Part 2

The L, Norm and Simple Least Squares

A Priori Information and Weighted Least Squared

Resolution and Generalized Inverses

Backus-Gilbert Inverse and the Trade Off of Resolution and Variance
The Principle of Maximum Likelihood

Inexact Theories

Nonuniqueness and Localized Averages

Vector Spaces and Singular Value Decomposition

Equality and Inequality Constraints

L, , L, Norm Problems and Linear Programming

Nonlinear Problems: Grid and Monte Carlo Searches

Nonlinear Problems: Newton’s Method

Nonlinear Problems: Simulated Annealing and Bootstrap Confidence Intervals
Factor Analysis

Varimax Factors, Empircal Orthogonal Functions

Backus-Gilbert Theory for Continuous Problems; Radon’s Problem
Linear Operators and Their Adjoints

Fréchet Derivatives

Exemplary Inverse Problems, incl. Filter Design

Exemplary Inverse Problems, incl. Earthquake Location
Exemplary Inverse Problems, incl. Vibrational Problems



Purpose of the Lecture

Introduce the concept of prediction error and the norms that
quantify it

Develop the Least Squares Solution
Develop the Minimum Length Solution

Determine the covariance of these solutions



Part 1

prediction error and norms



The Linear Inverse Problem

Gm=d



The Linear Inverse Problem

Gm d

model K

parameters data

data kernel



an estimate of the model parameters
can be used to predict the data

est — Apre
Gm d

but the prediction may not match the
observed data
(e.g. due to observational error)

dpre == dobs



this mismatch leads us to define the
prediction error

e = dobs -dpre

e=20

when the model parameters exactly predict
the data



example of prediction error
for line fit to data
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CCnOerD
rule for quantifying the overall size
of the error vector e

lot’s of possible ways to do 1t



L. family of norms

L,norm: |lell; = [Zhﬂl]
i
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L, norm: |le|l, = [Z|€f|2]
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L, norm: |ell, = [ZII]
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L. family of norms

L,norm: |lell; = [ZL?I-P]
z

15
L, norm: |le|, = [Zh?ﬂzl ‘1
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Euclidian length
1/n
L, norm: |lell,, = [Z|€g|“]
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higher norms give increaing weight to
largest element of e
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limiting case

L., norm: |le|l.,, = max
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[




guiding principle for solving an inverse
problem

find the m®st
that minimizes £F=||e|

with

e = dobs —dpre
and

dpre — Gmest



but which norm to use?

it makes a difference!
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Answer 1s related to the distribution of
the error. Are outliers common or rare?
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use low norm use high norm

gives low weight to outliers  gives high weight to outliers



as we will show later in the class ...

use L, norm
when data has
Gaussian-distributed error



Part 2

Least Squares Solution to Gm=d



L, norm of error 1s its Euclidian length

N
E = Zef = ele

=1

so £'1s the square of the Euclidean length
mimimize £
Principle of Least Squares



Least Squares Solution to Gm=d

N
E=efTe=(d-Gm)"(d—-Gm) =
-1

[ M ' M
d; — z Gim,; [di — Z Gikmk‘
i j=1 ) k=1

I

minimize £'with respect to m,,

JE/dm, = 0



E=ele=(d—Gm)"(d—Gm) =

i

M
d; —ZG! m; [ i—z G My,
) k=1

so, multiply out

M
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d m,
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first term
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first term
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since m;and m,are
Jhdepenc{'ent variables



Kronecker delta
(elements of 1dentity matrix)

[I] Ij = 0y

Y



second term

third term

N _
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d
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putting 1t all together

M N
5mq = 2 Z M, GigGix — —2 Z Gigd;
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or

GIGm - GTd =0



presuming [G'G] has an inverse

Least Square Solution

mest — [GTG]—lGTd



presuming [G'G] has an inverse

Least Square Solution

mest — [GTG]—lGTd

o

— memorize



example
straight line problem

Gm=d
1z d
1 z, [m1] | d;

[ Imyl
1 zy] dy
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1n practice,
no need to multiply matrices
analytically

just use MatLab

mest = (G’ *G)\ (G’ *d) ;



another example
fitting a plane surface

d; = m; + myx; + myy;

Gm=d
1 x; vy m,- d
% X-Z y-z my| = d.z
1 xy ynd - dy.
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Part 3

Minimum Length Solution



but Least Squares will fail

when [G'G] has no inverse



example
fitting line to a single point
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[G'G]™

—————

zero determinant
hence no inverse



Least Squares will fail

when more than one solution
minimizes the error

the inverse problem 1s
“underdetermined”



simple example of an underdetermined
problem
-




What to do?
use another guiding principle

“a priorr’” information about the
solution



in the case
choose a solution that 1s small

minimize |m||,



simplest case
“purely underdetermined”

more than one solution has zero error



minimize L=||m]|,?
with the constraint that e=0



Method of Lagrange Multipliers
minimize L with constraints

C,=0, C,=0, ...
equivalent to

minimize P=L+A,C;+A,C,+...
with no constraints
As called “Lagrange Multipliers”
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presuming [GG'] has an inverse

Minimum Length Solution

mest :GT [GGT ]1d



presuming [GG'] has an inverse

Minimum Length Solution

mest :GT [GGT ]1d

o

— memorize



Part 4

Covarilance



Least Squares Solution
mest= [GTG ]-1GTd

Minimum Length Solution
mest=G? [GGT] 1d

both have the linear form
m=Md



but 1f
m=Md
then
[covim] =M [covd] M

when data are uncorrelated with uniform
variance g/

[covd]=0/1

SO



Least Squares Solution
[covm] = [G'G ]G/ G[G'G ]!
[covm] = ¢/ [G'G ]

Minimum Length Solution
[covm] = G [GG" | ¢/ [GG" |1G
[covm] = g/ G! [GG! |*G



Least Squares Solution
[covm] = [G'G ]G/ G[G'G ]!
[covm] = ¢/ [G'G ]!

memorize

Minimum Length Solution
[covm] = G [GG" | ¢/ [GG" |1G
[covm] = g/ G! [GG! |*G




where to obtain the value of g 7

a prior1 value — based on knowledge of accuracy
of measurement technique

my ruler has 1 mm divisions, so o,~%mm

a posterior1 value — based on prediction error




variance critically dependent on
experiment design (structure of G)

w
=N W b

which 1s the better way to weigh a set of boxes ?
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Relationship between
|cov m] and Error Surface
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Taylor Series expansion of the
error about 1ts minimum

1 0°E

[1’1’1 _ mest]
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AE = E(m) — E(m®%) = [m — m*t]T {



Taylor Series expansion of the
error about 1ts minimum
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curvature matrix

with elements
O’E/ 8mi(3mj



for a linear problem
curvature is related to G'G

E = (Gm-d)"'(Gm-d) =
m'[G'G]m-d"Gm-m'G'd+d"d
SO

0*E/ om;0om, = [G'G] ;



and since
[covm] =0, [G'G]!

we have




the sharper the minimum
the higher the curvature
the smaller the covariance



