
Lecture 5

A Priori Information and Weighted

Least Squared

Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches

Lecture 15 Nonlinear Problems: Newton’s Method

Lecture 16 Nonlinear Problems: Simulated Annealing and Bootstrap Confidence Intervals

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empircal Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems

Purpose of the Lecture

Classify Inverse Problems as Overdetermined,

Underdetermined and Mixed-Determined

Further Develop the Notion of A Priori Information

Apply A Priori Information to Solving Inverse Problems

Part 1

Classification of Inverse Problems on

the Basis of Information Content

“Even Determined”
Exactly enough data is available to determine the

model parameters

E=0 and solution unique

(a rare case)

“Over Determined”
More than enough data is available to determine the

model parameters

E>0 and solution unique

“Under Determined”
Insufficient data is available to determine all the model

parameters

E=0 and solution non-unique

This configuration is also underdetermined

since only the mean is determined

“Mixed Determined”
More than enough data is available to constrain some

the model parameters

Insufficient data is available to constrain other model

parameters

E>0 and solution non-unique

this configuration is also mixed-determined

the average of the two blocks is over-determined

and

the difference between the two blocks is under-

determined

mixed-determined

some linear combinations of model

parameters are not determined by the

data

(very common)

what to do?

add a priori information that

supplement observations

Part 2

a priori information

a priori information

preconceptions about the behavior

of the model parameters

example of a priori information

model parameters are:

small

near a given value

have a known average value

smoothly varying with position

solve a known differential equation

positive

etc.

dangerous?

perhaps …

but we have a lot of experience about

the world in general, so why not put

that experience to work

one approach to solving

a mixed-determined problem

“of all the solutions that minimize E=||e||2

choose the one with minimum L =||m||2”

“of all the solutions that minimize E
choose the one with minimum L”

turns out to be hard to do, since you have to

know how to divide up the model parameters

into two groups

one over-determined

one under-determined

next best thing

“of all the solutions that minimize E
choose the one with minimum L”

“choose the solutions that minimizes

E+ε2L”

minimize

when ε2 is chosen to be small,
the E will be approximately minimized and the solution

will be small

minimize

damped least-squares solution

minimize

damped least-squares solution

Very similar to least-squares

Just add ε2 to diagonal of GTG

Part 3

Using Prior Information to Solve

Inverse Problems

m is small

minimize

L=mTm

m is close to <m>

minimize

m varies slowly with position

(m is flat)

characterize steepness with

first-difference

approximation

for dm/dx

m varies smoothly with position

(m is smooth)

characterize roughness with

second-difference

approximation

for d2m/dx2

1 -2 1

1 -2 1

⋱ ⋱ ⋱

1 -2 1

m varies slowly/smoothly with position

minimize

with Wm = DTD

Suppose that some data are more

accurately determined than others

minimize

example

when d3 is more accurately measured

than the other data

weighted damped least squares

minimize E+ε2L
with

and

weighted damped least squares

solution

weighted damped least squares

solution

a bit complicated, but …

equivalent to solving

by simple least squares

m =

m =

top rows

data equation Gm=d
weighted by We

1/2

m =

top rows

a priori equation

m=<m>
weighted by ε D

you can even use this equation to

implement constraints

just by making ε very large

example

fill in missing data

of

discretized version of m(z)

m(zi)

zi
0 100

dj

set up

M=100 model parameters

N<M data

data, when available, gives values of model parameter

di = mj

d = Gm

associates datum

with corresponding

model parameter

each row has M-1
zeros and a single

one
a priori information of

smoothness in interior x’s
flatness at ends

F m = f

F m = f associates datum with

corresponding model

parameter

F m = f
roughness in interior

F m = f
steepness at left

F m = f

steepness at right

computational efficiency

1. Use sparse matrices

2. Use solver that does not require forming FTF

1. Sparse matrices

F = spalloc(N, M, 3*N);

2A. Use Biconjugate Gradient Algorithm

(an iterative method to solve FTFm = FTf)

clear F;

global F;

- - -

tol = 1e-6;

maxit = 3*M;

mest = bicg(@weightedleastsquaresfcn, F'*f, tol, maxit);

stop iterations
when solution is good enough

2A. Use Biconjugate Gradient Algorithm

(an iterative method to solve FTFm = FTf)

clear F;

global F;

- - -

tol = 1e-6;

maxit = 3*M;

mest = bicg(@weightedleastsquaresfcn, F'*f, tol, maxit);

stop iterations after maximum
iteration is reached, regardless
of whether it is good enough

2A. Use Biconjugate Gradient Algorithm

(an iterative method to solve FTFm = FTf)

clear F;

global F;

- - -

tol = 1e-6;

maxit = 3*M;

mest = bicg(@weightedleastsquaresfcn, F'*f, tol, maxit);

FTf

2A. Use Biconjugate Gradient Algorithm

(an iterative method to solve FTFm = FTf)

clear F;

global F;

- - -

tol = 1e-6;

maxit = 3*M;

mest = bicg(@weightedleastsquaresfcn, F'*f, tol, maxit);

function that calculates
FTF times a vector v

2B. Function to multiply a vector by FTF
do as y = FT(Fv) so FTF never calculated

function y = weightedleastsquaresfcn(v,transp_flag)

global F;

temp = F*v;

y = F'*temp;

return

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

z

m
(z
)

z

m(z)

