
Lecture 5

A Priori Information and Weighted 

Least Squared



Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2 

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches 

Lecture 15 Nonlinear Problems: Newton’s Method 

Lecture 16 Nonlinear Problems:  Simulated Annealing and Bootstrap Confidence Intervals 

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empircal Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems



Purpose of the Lecture

Classify Inverse Problems as Overdetermined, 

Underdetermined and Mixed-Determined

Further Develop the Notion of A Priori Information

Apply A Priori Information to Solving Inverse Problems



Part 1

Classification of Inverse Problems on 

the Basis of Information Content



“Even Determined”
Exactly enough data is available to determine the 

model parameters

E=0 and solution unique

(a rare case)



“Over Determined”
More than enough data is available to determine the 

model parameters

E>0 and solution unique



“Under Determined”
Insufficient data is available to determine all the model 

parameters

E=0 and solution non-unique



This configuration is also underdetermined

since only the mean is determined



“Mixed Determined”
More than enough data is available to constrain some 

the model parameters

Insufficient data is available to constrain other model 

parameters

E>0 and solution non-unique 



this configuration is also mixed-determined

the average of the two blocks is over-determined

and

the difference between the two blocks is under-

determined



mixed-determined

some linear combinations of model 

parameters are not determined by the 

data

(very common)



what to do?

add a priori information that

supplement observations



Part 2

a priori information



a priori information

preconceptions about the behavior 

of the model parameters



example of a priori information

model parameters are:

small

near a given value

have a known average value

smoothly varying with position

solve a known differential equation

positive

etc.



dangerous?

perhaps …

but we have a lot of experience about 

the world in general, so why not put 

that experience to work



one approach to solving

a mixed-determined problem

“of all the solutions that minimize E=||e||2

choose the one with minimum L =||m||2”



“of all the solutions that minimize E
choose the one with minimum L”

turns out to be hard to do, since you have to 

know how to divide up the model parameters 

into two groups

one over-determined

one under-determined



next best thing

“of all the solutions that minimize E
choose the one with minimum L”

“choose the solutions that minimizes

E+ε2L”



minimize

when ε2 is chosen to be small,
the E will be approximately minimized and the solution 

will be small



minimize

damped least-squares solution



minimize

damped least-squares solution

Very similar to least-squares

Just add ε2 to diagonal of GTG



Part 3

Using Prior Information to Solve 

Inverse Problems



m is small

minimize

L=mTm



m is close to <m>

minimize



m varies slowly with position

(m is flat)

characterize steepness with

first-difference

approximation 

for dm/dx



m varies smoothly with position

(m is smooth)

characterize roughness with

second-difference

approximation 

for d2m/dx2
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m varies slowly/smoothly with position

minimize

with Wm = DTD



Suppose that some data are more 

accurately determined than others

minimize



example

when d3 is more accurately measured 

than the other data



weighted damped least squares

minimize E+ε2L
with

and



weighted damped least squares

solution



weighted damped least squares

solution

a bit complicated, but …



equivalent to solving

by simple least squares



m =



m =

top rows

data equation Gm=d
weighted by We

1/2



m =

top rows

a priori equation 

m=<m>
weighted by ε D



you can even use this equation to 

implement constraints

just by making ε very large



example

fill in missing data

of

discretized version of m(z)

m(zi)

zi
0 100

dj



set up

M=100 model parameters 

N<M data

data, when available, gives values of model parameter

di = mj

d = Gm

associates datum

with corresponding 

model parameter

each row has M-1
zeros and a single 

one
a priori information of

smoothness in interior x’s
flatness at ends



F m = f



F m = f associates datum with 

corresponding model 

parameter



F m = f
roughness in interior



F m = f
steepness at left



F m = f

steepness at right



computational efficiency

1. Use sparse matrices

2. Use solver that does not require forming FTF



1. Sparse matrices

F = spalloc(N, M, 3*N);



2A. Use Biconjugate Gradient Algorithm

(an iterative method to solve FTFm = FTf)

clear F;

global F;

- - -

tol = 1e-6;

maxit = 3*M;

mest = bicg( @weightedleastsquaresfcn, F'*f, tol, maxit );

stop iterations
when solution is good enough



2A. Use Biconjugate Gradient Algorithm

(an iterative method to solve FTFm = FTf)

clear F;

global F;

- - -

tol = 1e-6;

maxit = 3*M;

mest = bicg( @weightedleastsquaresfcn, F'*f, tol, maxit );

stop iterations after maximum 
iteration is reached, regardless 
of whether it is good enough



2A. Use Biconjugate Gradient Algorithm

(an iterative method to solve FTFm = FTf)

clear F;

global F;

- - -

tol = 1e-6;

maxit = 3*M;

mest = bicg( @weightedleastsquaresfcn, F'*f, tol, maxit );

FTf



2A. Use Biconjugate Gradient Algorithm

(an iterative method to solve FTFm = FTf)

clear F;

global F;

- - -

tol = 1e-6;

maxit = 3*M;

mest = bicg( @weightedleastsquaresfcn, F'*f, tol, maxit );

function that calculates 
FTF times a vector v



2B. Function to multiply a vector by FTF
do as y = FT(Fv) so FTF never calculated

function y = weightedleastsquaresfcn(v,transp_flag)

global F;

temp = F*v;

y = F'*temp;

return
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