
Lecture 6

Resolution

and

Generalized Inverses



Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2 

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches 

Lecture 15 Nonlinear Problems: Newton’s Method 

Lecture 16 Nonlinear Problems:  Simulated Annealing and Bootstrap Confidence Intervals 

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empircal Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems



Purpose of the Lecture

Introduce the idea of a Generalized Inverse,
the Data and Model Resolution Matrices

and the Unit Covariance Matrix

Quantify the spread of resolution and the size of the covariance

Use the maximization of resolution and/or covariance as the 
guiding principle for solving inverse problems



Part 1

The Generalized Inverse,

the Data and Model Resolution 

Matrices

and the Unit Covariance Matrix



all of the solutions

of the form

mest = Md + v



mest = Md + v

let’s focus on 

this matrix



mest = G-gd + v
rename it the 

“generalized 

inverse”

and use the 

symbol G-g



(let’s ignore the vector v for a moment)

Generalized Inverse G-g

operates on the data to give an 

estimate of the model parameters

if

dpre = Gmest

then

mest = G-gdobs



Generalized Inverse G-g

if  dpre = Gmest then  mest = G-gdobs

sort of looks like a matrix inverse

except

M⨉N, not square

and

GG-g≠I and G-gG≠I



so actually

the generalized inverse is not a 

matrix inverse at all



dpre = Gmest and   mest = G-gdobs

dpre = Ndobs with  N = GG-g

“data resolution matrix”

plug one equation into the other



Data Resolution Matrix, N

How much does di
obs contribute to its 

own prediction?

dpre = Ndobs



if

N=I

di
pre = di

obs

dpre = dobs 

di
obs completely controls its own prediction



dpre dobs=

(A)

The closer N is to I, the more di
obs controls 

its own prediction
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dpre =                  N                             dobs 

only the data at the ends control their own prediction



dobs = Gmtrue and   mest = G-gdobs

mest = Rmtrue with  R = G-gG

“model resolution 
matrix”

plug one equation into the other



Model Resolution Matrix, R

How much does mi
true contribute to its 

own estimated value?

mest = Rmtrue



if

R=I

mi
est = mi

true

mest = mtrue

mi
est reflects mi

true only



else if

R≠I

mi
est =

… + Ri,i-1mi-1
true + Ri,imi

true + Ri,i+1mi+1
true+ …

mi
est is a weighted average

of all the elements of mtrue



mest mtrue=

The closer R is to I, the more mi
est reflects only mi

true



Discrete version of

Laplace Transform

large c: d is “shallow” average of m(z)
small c:  d is “deep” average of m(z)
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mest =                  R                             mtrue

the shallowest model parameters are “best resolved”



Covariance associated with the 

Generalized Inverse

“unit covariance matrix”
divide by σ2 to remove effect of the

overall magnitude of the measurement error



unit covariance for straight line 

problem

model parameters uncorrelated when this term zero
happens when data are centered about the origin



Part 2

The spread of resolution and the 

size of the covariance



a resolution matrix has small 

spread if only its main diagonal has 

large elements

it is close to the identity matrix



“Dirichlet” Spread Functions



a unit covariance matrix has small size 

if its diagonal elements are small

error in the data corresponds to only 

small error in the model parameters

(ignore correlations)





Part 3

minimization of

spread of resolution

and/or

size of covariance

as the guiding principle

for creating a generalized inverse 



over-determined case

note that for

simple least squares

G-g = [GTG]-1GT

model resolution
R=G-gG = [GTG]-1GTG=I

always the identify matrix



suggests that we try to minimize the 

spread of the data resolution matrix, N

find G-g that minimizes spread(N)



spread of the k-th row of N

now compute



first term



second term

third term is zero



putting it all together

which is just

simple least squares

G-g = [GTG]-1GT



the simple least squares solution

minimizes the spread of data resolution

and 

has zero spread of the model resolution



under-determined case

note that for

minimum length solution

G-g = GT [GGT]-1

data resolution
N=GG-g = G GT [GGT]-1 =I
always the identify matrix



suggests that we try to minimize the 

spread of the model resolution matrix, R

find G-g that minimizes spread(R)



minimization leads to

[GGT]G-g = GT

which is just

minimum length solution

G-g = GT [GGT]-1



the minimum length solution

minimizes the spread of model resolution

and 

has zero spread of the data resolution



general case

leads to



a Sylvester Equation, so explicit 

solution in terms of matrices

leads to

general case



1

special case #1

0 ε2

[GTG+ε2I]G-g=GT

G-g=[GTG+ε2I]-1GT

I

damped least 

squares



0

special case #2

1 ε2

G-g[GGT+ε2I] =GT

G-g=GT [GGT+ε2I]-1

I

damped minimum 

length



so

no new solutions have arisen …

… just a reinterpretation of previously-

derived solutions



reinterpretation

instead of solving for estimates of the 
model parameters

We are solving for estimates of weighted 
averages of the model parameters,

where the weights are given by the 
model resolution matrix



criticism of Direchlet spread() functions

when m represents m(x)

is that they don’t capture the sense of 

“being localized” very well



These two rows of the model resolution 

matrix have the same spread …

Rij Rij

index, j index, ji i

… but the left case is better “localized”



we will take up this issue in the 

next lecture


