
Lecture 9

Inexact Theories



Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2 

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches 

Lecture 15 Nonlinear Problems: Newton’s Method 

Lecture 16 Nonlinear Problems:  Simulated Annealing and Bootstrap Confidence Intervals 

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empirical Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems



Purpose of the Lecture

Discuss how an inexact theory can be represented

Solve the inexact, linear Gaussian inverse problem

Use maximization of relative entropy as a guiding principle 
for solving inverse problems

Introduce F-test as way to determine whether one solution is 
“better” than another



Part 1

How Inexact Theories can be 

Represented



How do we generalize the case of

an exact theory

to one that is inexact?
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how do you

combine

two probability density functions ?



how do you

combine

two probability density functions ?

so that the information in them is combined ...



desirable properties

order shouldn’t matter

combining something with the null 
distribution should leave it unchanged

combination should be invariant under 
change of variables



Answer
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“solution to inverse problem”

maximum likelihood point of

(with pN∝constant)

simultaneously gives
mest and dpre



probability that the estimated model parameters 
are near m and the predicted data are near d

probability that the estimated model parameters 
are near m irrespective of the value of the  

predicted data

T



conceptual problem

do not necessarily have maximum 
likelihood points at the same value of m

and

T
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illustrates the problem in defining a

definitive solution

to an inverse problem



illustrates the problem in defining a

definitive solution

to an inverse problem

fortunately

if all distributions are Gaussian

the two points are the same



Part 2

Solution of the inexact linear 

Gaussian inverse problem



Gaussian a priori information



Gaussian a priori information

a priori values 
of model 

parameters
their 

uncertainty



Gaussian observations



Gaussian observations

observed 
data

measurement 
error



Gaussian theory



Gaussian theory

linear 
theory

uncertainty
in theory



mathematical statement of problem

find (m,d) that maximizes

pT(m,d) = pA(m) pA(d) pg(m,d)

and, along the way, work out the form of pT(m,d)



notational simplification

group m and d into single vector x = [dT, mT]T

group [cov m]A and [cov d]A into single matrix

write d-Gm=0 as Fx=0 with F=[I,  –G]



after much algebra, we find

pT(x) is a Gaussian distribution

with mean

and variance



after much algebra, we find

pT(x) is a Gaussian distribution

with mean

and variance
solution to 

inverse 

problem



after pulling mest out of x*



after pulling mest out of x*

reminiscent of GT(GGT)-1 

minimum length solution



after pulling mest out of x*

error in theory adds to 

error in data



after pulling mest out of x*

solution depends on the 

values of the prior 

information only to the 

extent that the model 

resolution matrix is different 

from an identity matrix



and after algebraic manipulation

which also equals

reminiscent of (GTG)-1 GT 

least squares solution



interesting aside

weighted least squares solution

is equal to the

weighted minimum length solution



what did we learn?

for linear Gaussian inverse problem

inexactness of theory

just adds to

inexactness of data



Part 3

Use maximization of relative 

entropy as a guiding principle for 

solving inverse problems



from last lecture



assessing the information content

in pA(m)

Do we know a little about m

or

a lot about m ?



Information Gain, S

-S  called Relative Entropy 
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Principle of

Maximum Relative Entropy

or if you prefer

Principle of

Minimum Information Gain



find solution p.d.f. pT(m) that has smallest possible 

new information as compared to a priori p.d.f. pA(m)

find solution p.d.f. pT(m) that has the largest relative 

entropy as compared to a priori p.d.f. pA(m)

or if you prefer





properly 
normalized

p.d.f.
data is satisfied in the mean

or

expected value of error is zero



After minimization using Lagrange 

Multipliers process

pT(m) is Gaussian with maximum 
likelihood point mest satisfying



After minimization using Lagrane

Multipliers process

pT(m) is Gaussian with maximum 

likelihood point mest satisfying

just the weighted minimum 

length solution



What did we learn?

Only that the

Principle of Maximum Entropy

is yet another way of deriving

the inverse problem solutions

we are already familiar with



Part 4

F-test

as way to determine whether one solution is 

“better” than another 



Common Scenario

two different theories

solution mest
A

MA model parameters

prediction error EA

solution mest
B

MB model parameters

prediction error EB



Suppose EB < EA

Is B really better than A ?



What if B has many more model 

parameters than A

MB >> MA

Is B fitting better any surprise?



Need to against Null Hypothesis

The difference in error is due to

random variation



suppose error e has a Gaussian p.d.f.

uncorrelated

uniform variance σd



estimate variance



want to known the probability 
density function of



actually, we’ll use the quantity

which is the same, as long as the two theories 
that we’re testing is applied to the same data
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as is its mean and variance



example

same dataset fit with

a straight line

and

a cubic polynomial
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probability that

F >F est

(cubic fit seems better than linear fit)

by random chance alone

or

F < 1/F est

(linear fit seems better than cubic fit)

by random chance alone



in  MatLab

P = 1 - (fcdf(Fobs,vA,vB)-fcdf(1/Fobs,vA,vB));



answer: 6%

The Null Hypothesis

that the difference is due to random variation

cannot be rejected to 95% confidence


