Lecture 10

Nonuniqueness and Localized Averages

Syllabus

•
Describing Inverse Problems
Probability and Measurement Error, Part 1
Probability and Measurement Error, Part 2
The L ₂ Norm and Simple Least Squares
A Priori Information and Weighted Least Squared
Resolution and Generalized Inverses
Backus-Gilbert Inverse and the Trade Off of Resolution and Variance
The Principle of Maximum Likelihood
Inexact Theories
Nonuniqueness and Localized Averages
Vector Spaces and Singular Value Decomposition
Equality and Inequality Constraints
L_1 , L_∞ Norm Problems and Linear Programming
Nonlinear Problems: Grid and Monte Carlo Searches
Nonlinear Problems: Newton's Method
Nonlinear Problems: Simulated Annealing and Bootstrap Confidence Intervals
Factor Analysis
Varimax Factors, Empirical Orthogonal Functions
Backus-Gilbert Theory for Continuous Problems; Radon's Problem
Linear Operators and Their Adjoints
Fréchet Derivatives
Exemplary Inverse Problems, incl. Filter Design
Exemplary Inverse Problems, incl. Earthquake Location
Exemplary Inverse Problems, incl. Vibrational Problems

Purpose of the Lecture

Show that null vectors are the source of nonuniqueness

Show why some localized averages of model parameters are unique while others aren't

Show how nonunique averages can be bounded using prior information on the bounds of the underlying model parameters

Introduce the Linear Programming Problem

Part 1

null vectors as the source of

nonuniqueness

in linear inverse problems

suppose two different solutions exactly satisfy the same data

$Gm^{(1)} = d$ $Gm^{(2)} = d$

since there are two the solution is nonunique

then the difference between the solutions satisfies

$G(m^{(1)} - m^{(2)}) = 0$

the quantity

$\mathbf{m}^{\text{null}} = \mathbf{m}^{(1)} - \mathbf{m}^{(2)}$

is called a *null vector*

it satisfies

$\mathbf{G} \mathbf{m}^{\mathrm{null}} = \mathbf{0}$

an inverse problem can have more than one null vector

 $\mathbf{m}^{\mathrm{null}(1)}$ $\mathbf{m}^{\mathrm{null}(2)}$ $\mathbf{m}^{\mathrm{null}(3)}$...

any linear combination of null vectors is a null vector

 $\alpha \mathbf{m}^{\text{null}(1)} + \beta \mathbf{m}^{\text{null}(2)} + \gamma \mathbf{m}^{\text{null}(3)}$ is a null vector for any α , β , γ

suppose that a particular choice of model parameters

m^{par}

satisfies

 $G m^{par} = d^{obs}$

with error E

has the same error Efor any choice of α_i

$\mathbf{e} = \mathbf{d}^{\text{obs}} - \mathbf{G}\mathbf{m}^{\text{gen}} = \mathbf{d}^{\text{obs}} - \mathbf{G}\mathbf{m}^{\text{par}} + \Sigma_{i} \alpha_{i} 0$

since α_i is arbitrary the solution is nonunique

hence

an inverse problem is nonunique

if it has null vectors

example
consider the inverse problem
$$\mathbf{Gm} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \end{bmatrix} = \begin{bmatrix} d_1 \end{bmatrix}$$

a solution with zero error is $\mathbf{m}^{\text{par}} = [\mathbf{d}_1, \mathbf{d}_1, \mathbf{d}_1, \mathbf{d}_1]^T$

the null vectors are easy to work out

$$\mathbf{m}^{\text{null}\,(1)} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} \qquad \mathbf{m}^{\text{null}\,(2)} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} \qquad \mathbf{m}^{\text{null}\,(3)} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$

note that $[\frac{1}{4} \quad \frac{1}{4} \quad \frac{1}{4} \quad \frac{1}{4}]$ times any of these vectors is zero

the general solution to the inverse problem is

$$\mathbf{m}^{\text{gen}} = \begin{bmatrix} d_1 \\ d_1 \\ d_1 \\ d_1 \end{bmatrix} + \alpha_1 \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$

Part 2

Why some localized averages are

unique

while others aren't

let's denote a weighted average of the model parameters as

 $\langle m \rangle = a^T m$

where **a** is the vector of weights

let's denote a weighted average of the model parameters as

 $\langle m \rangle = a^T m$

where **a** is the vector of weights

a may or may not be "localized"

examples

$\mathbf{a} = [0.25, 0.25, 0.25, 0.25]^{T}$ not localized

$\mathbf{a} = [0.90, 0.07, 0.02, 0.01]^{T}$ localized near m₁

now compute the average of the general solution

$$\langle \mathbf{m} \rangle = \mathbf{a}^{\mathrm{T}} \mathbf{m}^{\mathrm{gen}} = \mathbf{a}^{\mathrm{T}} \mathbf{m}^{\mathrm{par}} + \sum_{i=1}^{q} \alpha_{i} \mathbf{a}^{\mathrm{T}} \mathbf{m}^{\mathrm{null}(i)}$$

 α

now compute the average of the general solution

 $\langle \mathbf{m} \rangle = \mathbf{a}^{\mathrm{T}} \mathbf{m}^{\mathrm{gen}} = \mathbf{a}^{\mathrm{T}} \mathbf{m}^{\mathrm{par}} + \sum_{n} \mathbf{m}^{\mathrm{par}} \mathbf{m}^{\mathrm{par}}$ $\alpha_i (\mathbf{a}^{\mathrm{T}} \mathbf{m}^{\mathrm{null}(i)})$ if this term is zero for all *i*, then $\langle m \rangle$ does not depend on α_{i} so average is unique

an average $\langle m \rangle = \mathbf{a}^T \mathbf{m}$ is unique

if the average of all the null vectors

is zero

if we just pick an average out of the hat because we like it ... its nicely localized

chances are that it will not zero all the null vectors

so the average will not be unique

relationship to model resolution **R**

$$\mathbf{m}^{\text{est}} = \mathbf{R}\mathbf{m}^{\text{true}} = \mathbf{G}^{-g}\mathbf{G}\mathbf{m}^{\text{true}} \quad \text{or} \quad m_i^{est} = \sum_{j=1}^M R_{ij}m_j^{true} = \sum_{j=1}^M \sum_{k=1}^N G_{ik}^{-g}G_{kj}m_j^{true}$$

$$m_i^{est} = \langle m \rangle^{(i)} = \sum_{j=1}^M a_j^{(i)} m_j^{true}$$
 with $a_j^{(i)} = \sum_{k=1}^N c_k^{(i)} G_{kj}$ and $c_k^{(i)} = G_{ik}^{-g}$

relationship to model resolution **R**

$$\mathbf{m}^{\text{est}} = \mathbf{R}\mathbf{m}^{\text{true}} = \mathbf{G}^{-g}\mathbf{G}\mathbf{m}^{\text{true}}$$
 or $m_i^{\text{est}} = \sum_{j=1}^M R_{ij}m_j^{\text{true}} = \sum_{j=1}^M \sum_{k=1}^N G_{ik}^{-g}G_{kj}m_j^{\text{true}}$

$$m_i^{est} = \langle m \rangle^{(i)} = \sum_{j=1}^M a_j^{(i)} m_j^{true}$$
 with $a_j^{(i)} = \sum_{k=1}^N c_k^{(i)} G_{kj}$ and $c_k^{(i)} = G_{ik}^{-g}$

a^T is a linear combination of the rows of the data kernel **G**

if we just pick an average out of the hat because we like it ... its nicely localized

its not likely that it can be built out of the rows of **G**

so it will not be unique

suppose we pick a average that is not unique

is it of any use?

Part 3

bounding localized averages

even though they are nonunique

we will now show

if we can put weak bounds on **m** they may translate into stronger bounds on <m>

example

$$\mathbf{m}^{\text{gen}} = \begin{bmatrix} d_1 \\ d_1 \\ d_1 \\ d_1 \end{bmatrix} + \alpha_1 \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$

with
$$\mathbf{a} = (1/3) \begin{bmatrix} 1, 1, 1, 0 \end{bmatrix}^{\text{T}}$$

SO
$$\langle m \rangle = \mathbf{a}^{\text{T}} \mathbf{m}^{\text{gen}} = d_1 + 0 + 0 + \frac{1}{3} \alpha_3$$

example

$$\mathbf{m}^{\text{gen}} = \begin{bmatrix} d_1 \\ d_1 \\ d_1 \\ d_1 \end{bmatrix} + \alpha_1 \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$
with
$$\mathbf{a} = (1/3) \begin{bmatrix} 1, 1, 1, 0 \end{bmatrix}^{\text{T}}$$
SO
$$\langle m \rangle = \mathbf{a}^{\text{T}} \mathbf{m}^{\text{gen}} = d_1 + 0 + 0 + \frac{1}{3} \alpha_3$$
nonunique

but suppose m_i is bounded $0 > m_i > 2d_1$

smallest
$$\alpha_3 = -d_1$$

largest $\alpha_3 = +d_1$

smallest
$$\alpha_3 = -d_1$$

largest $\alpha_3 = +d_1$

$$\langle m \rangle = \mathbf{a}^{\mathrm{T}} \mathbf{m}^{\mathrm{gen}} = d_1 + 0 + 0 + \frac{1}{3}\alpha_3$$

 $(2/3) d_1 > \langle m \rangle > (4/3) d_1$

smallest
$$\alpha_3 = -d_1$$

largest $\alpha_3 = +d_1$

$$\langle m \rangle = \mathbf{a}^{\mathrm{T}} \mathbf{m}^{\mathrm{gen}} = d_1 + 0 + 0 + \frac{1}{3}\alpha_3$$

 $(2/3) d_1 > \langle m \rangle > (4/3) d_1$

bounds on $\langle m \rangle$ tighter than bounds on m_i

the question is how to do this in more complicated cases

maximize/minimize $\langle m \rangle = \mathbf{a}^{\mathrm{T}} \mathbf{m}$ with respect to \mathbf{m}

with the constraints $Gm=d^{obs}$ and $m^{(l)}\leq m\leq m^{(u)}$

Part 4

The Linear Programming Problem

the Linear Programming problem

find **x** that minimizes $z = \mathbf{f}^{\mathrm{T}} \mathbf{x}$

with the constraints $Ax \leq b$ and and Cx = d and $x^{(l)} \leq x \leq x^{(u)}$

the Linear Programming problem

flipping sign switches minimization to maximization

find **x** that minimizes $z = (\mathbf{f}^T \mathbf{x})$

with the constraints $Ax \leq b$ and and Cx = d and $x^{(l)} \leq x \leq x^{(u)}$ flipping signs of A and b switches to \geq

in Business

care about both profit z and product quantities x

care only about <m>, not **m**

In MatLab

- [mest1, amin] = linprog(a,[],[],G,dobs,mlb,mub);
- [mest2, amax] = linprog(-a,[],[],G,dobs,mlb,mub);

Example 1

simple data kernel one datum sum of m_i is zero

bounds $/m_i/ \le 1$

average unweighted average of *K* model parameters

for *K>10 <m>* has tigher bounds than *m_i*

Example 2

more complicated data kernel d_k weighted average of first 5k/2 m's

bounds $0 \le m_i \le 1$

average localized average of 5 neighboring model parameters

