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Nonuniqueness

and

Localized Averages
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Purpose of the Lecture

Show that null vectors are the source of nonuniqueness

Show why some localized averages of model parameters are 

unique while others aren’t

Show how nonunique averages can be bounded using prior 

information on the bounds of the underlying model parameters

Introduce the Linear Programming Problem



Part 1

null vectors as the source of

nonuniqueness

in linear inverse problems



suppose two different solutions 

exactly satisfy the same data

since there are two
the solution is nonunique



then the difference between the 

solutions satisfies



the quantity

mnull = m(1) – m(2)

is called a null vector

it satisfies

G mnull = 0



an inverse problem can have more than 

one null vector

mnull(1)   mnull(2)  mnull(3)...

any linear combination of null vectors is a 
null vector

αmnull(1)   + βmnull(2) +γmnull(3)

is a null vector for any α, β, γ



suppose that a particular choice of 

model parameters

mpar

satisfies

G mpar=dobs

with error E



then 

has the same error E
for any choice of αi



since 

e = dobs-Gmgen = dobs-Gmpar + Σi αi 0



since 

since αi is arbitrary

the solution is nonunique



hence

an inverse problem is

nonunique

if it has null vectors



Gm

example
consider the inverse problem

a solution with zero error is
mpar=[d1, d1, d1, d1]

T



the null vectors are easy to work out

note that times any

of these vectors is zero



the general solution to the inverse 

problem is



Part 2

Why some localized averages are

unique

while others aren’t



let’s denote a weighted average of 

the model parameters as

<m> = aT m

where a is the vector of weights



let’s denote a weighted average of 

the model parameters as

<m> = aT m

where a is the vector of weights

a may or may not be “localized”



a = [0.25,  0.25,  0.25,  0.25]T

a = [0. 90,  0.07,  0.02,  0.01]T

not localized

localized near m1

examples



now compute the average of the 

general solution



now compute the average of the 

general solution

if this term is zero for all i,
then <m> does not depend on αi,

so average is unique



an average <m>=aTm is unique

if the average of all the null vectors

is zero



if we just pick an average

out of the hat

because we like it ... its nicely localized

chances are that it will not zero all the null 
vectors

so the average will not be unique



relationship to model resolution  R



relationship to model resolution  R

aT is a linear combination of the rows 
of the data kernel G



if we just pick an average

out of the hat

because we like it ... its nicely localized

its not likely that it can be built out of the rows 
of G

so it will not be unique



suppose we pick a

average that is not unique

is it of any use?



Part 3

bounding localized averages

even though they are nonunique



we will now show

if we can put weak bounds on m

they may translate into stronger 

bounds on <m>



example

with

so



example

with

so

nonunique



but suppose mi is bounded

0 > mi > 2d1

smallest α3= -d1

largest α3= +d1



(2/3) d1      >      <m>     >   (4/3)d1

smallest α3= -d1

largest α3= +d1



(2/3) d1      >      <m>     >   (4/3)d1

smallest α3= -d1

largest α3= +d1

bounds on <m> tighter than bounds on mi



the question is how to do this in more 

complicated cases



Part 4

The Linear Programming Problem



the Linear Programming problem



the Linear Programming problem
flipping sign 

switches 
minimization to 
maximization

flipping signs of A and b
switches to ≥



in Business

unit profitquantity of each 
product profit

maximizes

no negative 
productionphysical limitations of factory

government regulations
etc

care about both profit z and product quantities x



in our case

a
m <m>

bounds on mnot needed Gm=d

first minimize
then

maximize

care only about <m>, not m



In MatLab



Example 1

simple data kernel

one datum

sum of mi is zero

bounds

|mi| ≤ 1

average

unweighted average of K model parameters
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if you know that the sum of 20 things is zero
and

if you know that the things are bounded by ±1
then you know

the sum of 19 of the things is bounded by about ±0.1
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for K>10
<m> has tigher bounds

than mi



Example 2

more complicated data kernel

dk weighted average of first 5k/2 m’s

bounds

0 ≤ mi ≤ 1

average

localized average of 5 neighboring

model parameters
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Transform kernel
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