
Lecture 11

Vector Spaces

and

Singular Value Decomposition



Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2 

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches 

Lecture 15 Nonlinear Problems: Newton’s Method 

Lecture 16 Nonlinear Problems:  Simulated Annealing and Bootstrap Confidence Intervals 

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empirical Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems



Purpose of the Lecture

View m and d as points in the
space of model parameters and data

Develop the idea of transformations of coordinate axes

Show how transformations can be used to convert a weighted 
problem into an unweighted one 

Introduce the Natural Solution and the Singular Value 
Decomposition



Part 1

the spaces of

model parameters

and

data



what is a vector?

algebraic viewpoint

a vector is a quantity that is manipulated

(especially, multiplied)

via a specific set of rules

geometric viewpoint

a vector is a direction and length

in space 



what is a vector?

algebraic viewpoint

a vector is a quantity that is manipulated

(especially, multiplied)

via a specific set of rules

geometric viewpoint

a vector is a direction and length

in space 

column-

in our case, a space of 

very high dimension
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forward problem

d = Gm

maps an m onto a d

maps a point in S(m) to a point in S(d)



m3 d3

m

d

Forward Problem:  Maps S(m) onto S(d)



inverse problem

m = G-gd

maps a d onto an m

maps a point in S(m) to a point in S(d)



m3 d3

m

d

Inverse Problem:  Maps S(d) onto S(m)



Part 2

Transformations of coordinate axes 



coordinate axes are arbitrary

given M linearly-independent

basis vectors m(i)

we can write any vector m* as ...



span space

m3

d

m3

don’t span space



... as a linear combination of these 

basis vectors



... as a linear combination of these 

basis vectors

components of m* in new coordinate system

mi*’ = αi



might it be fair to say

that the components of a vector

are a column-vector

?



matrix formed from 

basis vectors

Mij = vj
(i)



transformation matrix T



transformation matrix T

same vector
different components



Q: does T preserve “length” ?

(in the sense that mTm = m’Tm’)

A: only when TT= T-1



transformation of the model space axes

d = Gm = GIm = [GTm
-1] [Tmm] = G’m’

d = Gm
d = G’m’

same equation
different coordinate 

system for m



transformation of the data space axes

d’ = Tdd = [TdG] m = G’’m

d = Gm
d’ = G’’m

same equation
different coordinate 

system for d



transformation of both data space and 

model space axes

d’ = Tdd = [TdGTm
-1] [Tmm] = G’’’m’

d = Gm
d’ = G’’’m’

same equation
different coordinate 
systems for d and m



Part 3

how transformations can be used 

to convert a weighted problem into 

an unweighted one 



when are transformations useful ?

remember this?



when are transformations useful ?

remember this?

massage this into a pair 
of transformations



mTWmm

Wm=DTD or Wm=Wm
½Wm

½=Wm
½TWm

½

OK since Wm
symmetric

mTWmm = mTDTDm = [Dm] T[Dm]

Tm



when are transformations useful ?

remember this?

massage this into a pair 
of transformations



eTWee

We=We
½We

½=We
½TWe

½

OK since We
symmetric

eTWee = eTWe
½TWe

½e = [We
½m] T[We

½m]

Td



we have converted weighted least-squares

minimize:  E’ + L’ = e’Te’ +m’Tm’ 

into unweighted least-squares



steps

1: Compute Transformations

Tm=D=Wm
½ and Te=We

½

2: Transform data kernel and data to new coordinate 
system

G’’’=[TeGTm
-1]   and d’=Ted

3: solve G’’’ m’ = d’ for m’ using unweighted method

4: Transform m’ back to original coordinate system

m=Tm
-1m’



steps

1: Compute Transformations

Tm=D=Wm
½ and Te=We

½

2: Transform data kernel and data to new coordinate 
system

G’’’=[TeGTm
-1]   and d’=Ted

3: solve G’’’ m’ = d’ for m’ using unweighted method

4: Transform m’ back to original coordinate system

m=Tm
-1m’

extra work



steps

1: Compute Transformations

Tm=D=Wm
½ and Te=We

½

2: Transform data kernel and data to new coordinate 
system

G’’’=[TeGTm
-1]   and d’=Ted

3: solve G’’’ m’ = d’ for m’ using unweighted method

4: Transform m’ back to original coordinate system

m=Tm
-1m’

to allow simpler 
solution method



Part 4

The Natural Solution and the 

Singular Value Decomposition 

(SVD) 



Gm = d

suppose that we could divide up the 
problem like this ...



Gm = d

only mp can affect d

since Gm0 =0



Gm = d

Gmp can only affect dp

since no m can 
lead to a d0





determined 
by data

determined by a  
priori information

determined 
by mp

not possible to 
reduce



natural solution

determine mp by solving dp-Gmp=0

set m0=0



what we need is a way to do 

Gm = d



Singular Value Decomposition (SVD)



singular value decomposition

UTU=I and   VTV=I



suppose only p λ’s are non-zero



suppose only p λ’s are non-zero

only first p
columns of 

U

only first p 
columns of 

V



Up
TUp=I and Vp

TVp=I

since vectors mutually pependicular

and of unit length

UpUp
T≠I and VpVp

T≠I

since vectors do not span entire space



The part of m that lies in V0 cannot effect d

since Vp
TV0=0

so V0 is the model null space



The part of d that lies in U0 cannot be 

affected by m

since ΛpVp
Tm is multiplied by Up

and U0 Up
T =0

so U0 is the data null space



The Natural Solution



The part of mest in V0 has zero length



The error has no component in Up



computing the SVD



determining p

use plot of λi vs. i

however

case of a clear division between
λi>0   and λi=0 

rare
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Natural Solution



 =        

(A) (B)

G m dobs mtrue

(mest)N

(mest)DML



resolution and covariance



resolution and covariance

large covariance if any λp are small



Is the Natural Solution the best solution?

Why restrict a priori information to the null 

space

when the data are known to be in error?

A solution that has slightly worse error but fits 

the a priori information better might be 

preferred ... 


