
Lecture 12

Equality and Inequality Constraints



Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2 

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches 

Lecture 15 Nonlinear Problems: Newton’s Method 

Lecture 16 Nonlinear Problems:  Simulated Annealing and Bootstrap Confidence Intervals 

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empirical Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems



Purpose of the Lecture

Review the Natural Solution and SVD

Apply SVD to other types of prior information

and to

equality constraints

Introduce Inequality Constraints and the

Notion of Feasibility

Develop Solution Methods

Solve Exemplary Problems



Part 1

Review the Natural Solution

and

SVD



subspaces

model parameters

mp can affect data

m0 cannot affect data

data

dp can be fit by model

d0 cannot be fit by any model



natural solution

determine mp by solving dp-Gmp=0

set m0=0



natural solution

determine mp by solving dp-Gmp=0

set m0=0

error reduced to its 

minimum E=e0
Te0



natural solution

determine mp by solving dp-Gmp=0

set m0=0

solution length 

reduced to its 

minimum L=mp
Tmp



Singular Value Decomposition (SVD)



singular value decomposition

UTU=I and   VTV=I



suppose only p λ’s are non-zero



suppose only p λ’s are non-zero

only first p
columns of 

U

only first p 
columns of 

V



Up
TUp=I and Vp

TVp=I

since vectors mutually pependicular

and of unit length

UpUp
T≠I and VpVp

T≠I

since vectors do not span entire space



The Natural Solution



The Natural Solution

natural 

generalized 

inverse G-g



resolution and covariance



Part 2

Application of SVD to other types 

of prior information

and to

equality constraints



general solution to linear inverse 
problem



2 lectures ago

general minimum-error solution



general minimum-error solution

natural solution

plus amount 

α of null 

vectors



you can adjust α to match whatever

a priori information you want

for example
m=<m> 

by minimizing L=||m-<m>||2 w.r.t. α



you can adjust α to match whatever

a priori information you want

for example
m=<m> 

by minimizing L=||m-<m>||2 w.r.t. α

get α =V0
T<m> so m = VpΛp

-1Up
Td + V0V0

T<m>



equality constraints

minimize E with constraint Hm=h



Step 1

find part of solution constrained by 

Hm=h

SVD of H (not G)

H = VpΛpUp
T

so
m=VpΛp

-1Up
Th + V0α



Step 2

convert Gm=d
into and equation for α

GVpΛp
-1Up

Th + GV0α = d
and rearrange

[GV0]α = [d - GVpΛp
-1Up

Th]
G’α= d’



Step 3

solve G’α= d’
for α

using least squares



Step 4

reconstruct m from α
m=VpΛp

-1Up
Th + V0α



Part 3

Inequality Constraints and the

Notion of Feasibility



Not all inequality constraints provide 

new information

x > 3

x > 2



Not all inequality constraints provide 

new information

x > 3

x > 2

follows from 

first constraint



Some inequality constraints are 

incompatible

x > 3

x < 2



Some inequality constraints are 

incompatible

x > 3

x < 2

nothing can be 

both bigger than 

3 and smaller 

than 2



every row of the inequality constraint

Hm ≥ h

divides the space of m
into two parts

one where a solution is feasible
one where it is infeasible

the boundary is a planar surface



when all the constraints are considered together

they either create a feasible volume

or they don’t

if they do, then the solution must be in that 

volume

if they don’t, then no solution exists



(A) (B)

m1 m1

m2 m2

feasible 

region



now consider the problem of minimizing the 

error E
subject to inequality constraints Hm ≥ h



if the global minimum is

inside the feasible region

then

the inequality constraints

have no effect on the solution



but

if the global minimum is

outside the feasible region

then

the solution is on the surface

of the feasible volume



but

if the global minimum is

outside the feasible region

then

the solution is on the surface

of the feasible volume

the point on the surface where E is the smallest



 

Hm≥h

m1

m2

-E

mest

Emininfeasible

feasible



furthermore

the feasible-pointing normal to the surface

must be parallel to ∇E

else

you could slide the point along the surface

to reduce the error E



 

Hm≥h

m1

m2

-E

mest

Emin



Kuhn – Tucker theorem



it’s possible to find a vector y with yi≥0 such that



it’s possible to find a vector y with y≥0 such that
feasible-pointing normals

to surface



it’s possible to find a vector y with y≥0 such that

the gradient 
of the error

feasible-pointing normals
to surface



it’s possible to find a vector y with y≥0 such that

the gradient 
of the error

is a non-negative 
combination of 

feasible normals

feasible-pointing  normals
to surface



it’s possible to find a vector y with y≥0 such that

the gradient 
of the error

is a non-negative 
combination of 

feasible normals

feasible-pointing  normals
to surface

y specifies the 
combination



it’s possible to find a vector y with y≥0 such that

for linear case with 
Gm=d



it’s possible to find a vector y with y≥0 such that

some coefficients yi
are positive



it’s possible to find a vector y with y≥0 such that

some coefficients yi
are positive

the solution is on the 
corresponding constraint 

surface



it’s possible to find a vector y with y≥0 such that

some coefficients yi
are zero



it’s possible to find a vector y with y≥0 such that

some coefficients yi
are zero

the solution is on the 
feasible side of the  

corresponding constraint 
surface



Part 4

Solution Methods 



simplest case

minimize E subject to mi>0

(H=I and h=0)

iterative algorithm with two nested 

loops



Step 1

Start with an initial guess for m

The particular initial guess m=0 is feasible

It has all its elements in mE

constraints satisfied in the equality sense



Step 2

Any model parameter mi in mE that has associated 

with it a negative gradient [∇E]i can be changed 

both to decrease the error and to remain feasible. 

If there is no such model parameter in mE, the Kuhn 

– Tucker theorem indicates that this m is the 

solution to the problem.



Step 3

If some model parameter mi in mE has a corresponding 
negative gradient, then the solution can be changed to 
decrease the prediction error.

To change the solution, we select the model parameter 
corresponding to the most negative gradient and move it to 
the set mS.

All the model parameters in mS are now recomputed by 
solving the system GSm’S=dS in the least squares sense. 
The subscript S on the matrix indicates that only the 
columns multiplying the model parameters in mS have been 
included in the calculation.

All the mE’s are still zero. If the new model parameters are all 
feasible, then we set m = m′ and return to Step 2.



Step 4
If some of the elements of m’S are infeasible, however, 

we cannot use this vector as a new guess for the 
solution.

So, we compute the change in the solution  and add as 
much of this vector as possible to the solution mS

without causing the solution to become infeasible.

We therefore replace mS with the new guess mS + α δm, 
where  is the largest choice that can be made without 
some mS becoming infeasible. At least one of the mSi’s
has its constraint satisfied in the equality sense and 
must be moved back to mE. The process then returns to 
Step 3.



In MatLab

mest = lsqnonneg(G,dobs);



example

gravitational field depends upon density

via the inverse square law



example

observations

gravitational force depends upon density

model 
parameters

via the inverse square law

theory
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more complicated case

minimize ||m||2 subject to Hm≥h



this problem is solved by 

transformation to the previous 

problem



solve by non-negative least squares

then compute mi as

with e’=d’-G’m’



In MatLab



         

m2

m1

m2

m1

m2

m1

m2

m1

feasible

(A) m1-m2≥0 (B) ½m1-m2≥1 (C) m1≥0.2 (D) Intersection

feasible feasible feasible

infeasible infeasible infeasible infeasible

mest



yet more complicated case

minimize ||d-Gm||2 subject to Hm≥h



this problem is solved by 

transformation to the previous 

problem



minimize ||m’|| subject to H’m’≥h’

and

where
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In MatLab

[Up, Lp, Vp] = svd(G,0);

lambda = diag(Lp);

rlambda = 1./lambda;

Lpi = diag(rlambda);

% transformation 1

Hp = -H*Vp*Lpi;

hp = h + Hp*Up'*dobs;

% transformation 2

Gp = [Hp, hp]';

dp = [zeros(1,length(Hp(1,:))), 1]';

mpp = lsqnonneg(Gp,dp);

ep = dp - Gp*mpp;

mp = -ep(1:end-1)/ep(end);

% take mp back to m

mest = Vp*Lpi*(Up'*dobs-mp);

dpre = G*mest;


