
Lecture 13

L1 , L∞ Norm Problems

and

Linear Programming



Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2 

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches 

Lecture 15 Nonlinear Problems: Newton’s Method 

Lecture 16 Nonlinear Problems:  Simulated Annealing and Bootstrap Confidence Intervals 

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empircal Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems



Purpose of the Lecture

Review Material on Outliers and Long-Tailed Distributions

Derive the L1 estimate of the
mean and variance of an exponential distribution

Solve the Linear Inverse Problem under the L1  norm
by Transformation to a Linear Programming Problem

Do the same for the L∞ problem



Part 1

Review Material on Outliers and 

Long-Tailed Distributions 



Review of the Ln family of norms
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higher norms give increaing weight to 

largest element of e



limiting case



but which norm to use?

it makes a difference!
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Answer is related to the distribution of 

the error.  Are outliers common or rare?

long tails

outliers common

outliers unimportant

use low norm

gives low weight to outliers

short tails

outliers uncommon

outliers important

use high norm

gives high weight to outliers



as we showed previously …

use L2 norm 

when data has

Gaussian-distributed error

as we will show in a moment … 

use L1 norm 

when data has

Exponentially-distributed error



comparison of p.d.f.’s
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to make realizations of an exponentially-

distributed random variable in MatLab

mu = sd/sqrt(2);

rsign = (2*(random('unid',2,Nr,1)-1)-1);

dr = dbar + rsign .* ...

random('exponential',mu,Nr,1);



Part 2

Derive the L1 estimate of the

mean and variance of an 

exponential distribution



use of Principle of Maximum Likelihood

maximize

L = log p(dobs)

the log-probability that the observed data was in fact 
observed

with respect to unknown parameters in the p.d.f.

e.g. its mean m1 and variance σ2



Previous Example: Gaussian p.d.f.



solving the two equations



solving the two equations

usual formula 
for the sample 

mean

almost the usual 
formula for the 
sample standard 

deviation



New Example: Exponential p.d.f.



solving the two equations

m1
est=median(d)   and



solving the two equations

m1
est=median(d)   and

more robust than sample mean
since outlier moves it only by 

“one data point”
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observations

1. When the number of data are even, the 

solution in non-unique but bounded

2. The solution exactly satisfies one of the data

these properties carry over to the 
general linear problem

1. In certain cases, the solution can be non-unique 
but bounded

2. The solution exactly satisfies M of the data 
equations



Part 3

Solve the Linear Inverse Problem 

under the L1  norm

by Transformation to a Linear 

Programming Problem



the Linear Programming problem

review



Case A

The Minimum L1 Length Solution



minimize

subject to the constraint

Gm=d



minimize

subject to the constraint

Gm=d

weighted L1
solution length

(weighted by σm
-1)

usual data

equations



transformation to an equivalent 

linear programming problem





all variables are required to be 

positive



usual data equations

with m=m’-m’’



“slack variables”

standard trick in linear programming

to allow m to have any sign while m1 and m2 are 

non-negative



same as



then α ≥ (m-<m>)
since x≥0

if +

can always be satisfied by 
choosing an appropriate x’



if -

can always be satisfied by 
choosing an appropriate x’

then α ≥ -(m-<m>)
since x≥0



taken together
then α ≥|m-<m>|



minimizing z
same as minimizing 

weighted solution length



Case B

Least L1 error solution

(analogous to least squares)



transformation to an equivalent 

linear programming problem





same as
α – x = Gm – d

α – x’ = -(Gm – d)
so previous argument 

applies



MatLab

% variables

% m = mp - mpp

% x = [mp', mpp', alpha', x', xp']'

% mp, mpp len M and alpha, x, xp, len N

L = 2*M+3*N;

x = zeros(L,1);

f = zeros(L,1);

f(2*M+1:2*M+N)=1./sd;



% equality constraints

Aeq = zeros(2*N,L);

beq = zeros(2*N,1);

% first equation G(mp-mpp)+x-alpha=d

Aeq(1:N,1:M)             =  G;

Aeq(1:N,M+1:2*M)         = -G;

Aeq(1:N,2*M+1:2*M+N)     = -eye(N,N);

Aeq(1:N,2*M+N+1:2*M+2*N) =  eye(N,N);

beq(1:N)                 =  dobs;

% second equation G(mp-mpp)-xp+alpha=d

Aeq(N+1:2*N,1:M)               =  G;

Aeq(N+1:2*N,M+1:2*M)           = -G;

Aeq(N+1:2*N,2*M+1:2*M+N)       =  eye(N,N);

Aeq(N+1:2*N,2*M+2*N+1:2*M+3*N) = -eye(N,N);

beq(N+1:2*N)                   =  dobs;



% inequality constraints A x <= b

% part 1: everything positive

A = zeros(L+2*M,L);

b = zeros(L+2*M,1);

A(1:L,:) = -eye(L,L);

b(1:L) = zeros(L,1);

% part 2; mp and mpp have an upper bound.

A(L+1:L+2*M,:) = eye(2*M,L);

mls = (G'*G)\(G'*dobs); % L2

mupperbound=10*max(abs(mls));

b(L+1:L+2*M) = mupperbound;



% solve linear programming problem

[x, fmin] = linprog(f,A,b,Aeq,beq);

fmin=-fmin;

mest = x(1:M) - x(M+1:2*M);
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the mixed-determined problem of

minimizing L+E

can also be solved via transformation

but we omit it here



Part 4

Solve the Linear Inverse Problem 

under the L∞ norm

by Transformation to a Linear 

Programming Problem



we’re going to skip all the details

and just show the transformation

for the overdetermined case



minimize  E=maxi (ei /σdi)  where e=dobs-Gm



note α is a scalar
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